Induced production of a new antioxidant phenylpropanoid from Streptomyces sp. by protoplast formation/regeneration

Bode HB, Bethe B, Höfs R, Zeeck A. Big effects from small changes: possible ways to explore nature’s chemical diversity. Chembiochem 2002;3:619–27.

CAS  Article  Google Scholar 

Onaka H, Nakaho M, Hayashi K, Igarashi Y, Furumai T. Cloning and characterization of the goadsporin biosynthetic gene cluster from Streptomyces sp. TP-A0584. Microbiol. 2005;151:3923–33.

CAS  Article  Google Scholar 

Horinouchi S, Beppu T. Hormonal control by A-factor of morphological development and secondary metabolism in Streptomyces. Proc Jpn Acad Ser B Phys Biol Sci. 2007;83:277–95.

CAS  Article  Google Scholar 

Kitani S, Miyamoto KT, Takamatsu S, Herawati E, Iguchi H, Nishitomi K, Uchida M, Nagamitsu T, Omura S, Ikeda H, Nihira T. Avenolide, a Streptomyces hormone controlling antibiotic production in Streptomyces avermitilis. Proc Natl Acad Sci USA 2011;108:16410–5.

CAS  Article  Google Scholar 

Kawai K, Wang G, Okamoto S, Ochi K. The rare earth, scandium, causes antibiotic overproduction in Streptomyces spp. FEMS Microbiol Lett. 2007;274:311–5.

CAS  Article  Google Scholar 

Hoshino S, Onaka H, Abe I. Activation of silent biosynthetic pathways and discovery of novel secondary metabolites in actinomycetes by co-culture with mycolic acid-containing bacteria. J Ind Microbiol Biotechnol. 2019;46:363–74.

CAS  Article  Google Scholar 

Metsä-Ketelä M, Ylihonko K, Mäntsälä P. Partial activation of a silent angucycline-type gene cluster from a Rubromycin β producing Streptomyces sp. PGA64. J Antibiot. 2004;57:502–10.

Article  Google Scholar 

Yamada Y, Arima S, Nagamitsu T, Johmoto K, Uekusa H, Eguchi T, Shin-ya K, Cane DE, Ikeda H. Novel terpenes generated by heterologous expression of bacterial terpene synthase genes in an engineered Streptomyces host. J Antibiot. 2015;68:385–94.

CAS  Article  Google Scholar 

Claessen D, Errington J. Cell wall deficiency as a coping strategy for stress. Trends Microbiol. 2019;27:1025–33.

CAS  Article  Google Scholar 

Mercier R, Kawai Y, Errington J. Excess membrane synthesis drives a primitive mode of cell proliferation. Cell. 2013;152:997–1007.

CAS  Article  Google Scholar 

Malina H, Robert-Gero M. Enhanced sinefungin production by medium improvement, mutagenesis, and protoplast regeneration of Streptomyces incarnates nrrl 8089. J Antibiot. 1985;38:1204–10.

CAS  Article  Google Scholar 

Shirahama T, Furumai T, Okanishi M. A Modified regeneration method for Streptomycete protoplasts. Agric Biol Chem. 1981;45:1271–3.

Google Scholar 

Holser RA. Lipid encapsulated phenolic compounds by fluidization. J Encapsulation Adsorpt Sci. 2013;03:13–5.

Article  Google Scholar 

Meenu M, Sharma A, Guha P, Mishra S. A rapid high-performance liquid chromatography photodiode array detection method to determine phenolic compounds in mung bean (Vigna radiata L.). Int J Food Prop. 2016;19:2223–37.

CAS  Article  Google Scholar 

Sharma AR, Harunari E, Oku N, Matsuura N, Trianto A, Igarashi Y. Two antibacterial and PPARα/γ-agonistic unsaturated keto fatty acids from a coral-associated actinomycete of the genus Micrococcus. Beilstein J Org Chem. 2020;16:297–304.

CAS  Article  Google Scholar 

Kiran Z, Begum S, Sara S, Bano Z, Siddiqui BS. Novel ferulic acid and benzophenone derivatives from the flower buds of Syzygium aromaticum. Nat Prod Res. 2021;35:3301–6.

CAS  Article  Google Scholar 

Tabata N, Tomoda H, Omura S. Ferroverdins, inhibitors of cholesteryl ester transfer protein produced by Streptomyces sp. WK-5344. II. Structure elucidation. J Antibiot. 1999;52:1108–13.

CAS  Article  Google Scholar 

Kawai Y, Mercier R, Wu LJ, Domínguez-Cuevas P, Oshima T, Errington J. Cell growth of wall-free L-form bacteria is limited by oxidative damage. Curr Biol. 2015;2:1613–8.

Article  Google Scholar 

Buangrab K, Sutthacheep M, Yeemin T, Harunari E, Igarashi Y, Sripreechasak P, Kanchanasin P, Tanasupawat S, Phongsopitanun W. Streptomyces corallincola and Kineosporia corallincola sp. nov., two new coral-derived marine actinobacteria. Int J Syst Evol Microbiol. 2022;72:72.

Article  Google Scholar 

留言 (0)

沒有登入
gif