A neurorobotics approach to behaviour selection based on human activity recognition

Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X (2019) A comprehensive review of EEG-based brain-computer interface paradigms. J Neural Eng 16(1):011001

Article  Google Scholar 

Amato G, Bacciu D, Broxvall M, Chessa S, Coleman S, Di Rocco M, Dragone M, Gallicchio C, Gennaro C, Lozano H, McGinnity TM, Micheli A, Ray AK, Renteria A, Saffiotti A, Swords D, Vairo C, Vance P (2015) Robotic ubiquitous cognitive ecology for smart homes. J Intell Robot Syst Theory Appl. https://doi.org/10.1007/s10846-015-0178-2

Article  Google Scholar 

Ashry S, Ogawa T, Gomaa W (2020) CHARM-deep: continuous human activity recognition model based on deep neural network using IMU sensors of smartwatch. IEEE Sens J 20(15):8757–8770. https://doi.org/10.1109/JSEN.2020.2985374

Article  Google Scholar 

Assembly UG (1948) Universal declaration of human rights. UN General Assembly

Bacciu D, Di Rocco M, Dragone M, Gallicchio C, Micheli A, Saffiotti A (2019) An ambient intelligence approach for learning in smart robotic environments. Comput Intell. https://doi.org/10.1111/coin.12233

Article  Google Scholar 

Bahuguna J, Weidel P, Morrison A (2018) Exploring the role of striatal D1 and D2 medium spiny neurons in action selection using a virtual robotic framework. Eur J Neurosci 49(6):737–753. https://doi.org/10.1111/ejn.14021

Article  PubMed  PubMed Central  Google Scholar 

Bariselli S, Fobbs WC, Creed MC, Kravitz AV (2019) A competitive model for striatal action selection. Brain Res. https://doi.org/10.1016/j.brainres.2018.10.009

Article  PubMed  Google Scholar 

Caine KE, Rogers WA, Fisk AD (2005) Privacy perceptions of an aware home with visual sensing devices. Proc Hum Factors Ergon Soc Annu Meet 49(21):1856–1858. https://doi.org/10.1177/154193120504902108

Article  Google Scholar 

Calvaresi D, Cesarini D, Sernani P, Marinoni M, Dragoni AF, Sturm A (2017) Exploring the ambient assisted living domain: a systematic review. J Ambient Intell Humaniz Comput 8(2):239–257

Article  Google Scholar 

Chen K, Zhang D, Yao L, Guo B, Yu Z, Liu Y (2021) Deep learning for sensor-based human activity recognition: overview, challenges, and opportunities. ACM Comput Surv (CSUR) 54(4):1–40

Google Scholar 

Dawson TM, Golde TE, Lagier-Tourenne C (2018) Animal models of neurodegenerative diseases. Nat Neurosci 21(10):1370–1379. https://doi.org/10.1038/s41593-018-0236-8

CAS  Article  PubMed  PubMed Central  Google Scholar 

Drakopoulos F, Baby D, Verhulst S (2021) A convolutional neural-network framework for modelling auditory sensory cells and synapses. Commun Biol 4(1):1–17

Article  Google Scholar 

Dura-Bernal S, Suter BA, Gleeson P, Cantarelli M, Quintana A, Rodriguez F, Kedziora DJ, Chadderdon GL, Kerr CC, Neymotin SA, McDougal RA, Hines M, Shepherd GM, Lytton WW (2019) NetPyNE, a tool for data-driven multiscale modeling of brain circuits. eLife 8:e44494. https://doi.org/10.7554/eLife.44494

Article  PubMed  PubMed Central  Google Scholar 

Fernandes Junior FE, Yang G, Do HM, Sheng W (2016) Detection of privacy-sensitive situations for social robots in smart homes. In: Automation science and engineering (CASE), 2016 IEEE international conference on, pp 727–732. IEEE. https://doi.org/10.1109/COASE.2016.7743474

Garcia FA, Ranieri CM, Romero RAF (2019) Temporal approaches for human activity recognition using inertial sensors. In: Proceedings—2019 Latin American robotics symposium, 2019 Brazilian symposium on robotics and 2019 workshop on robotics in education, LARS/SBR/WRE 2019, pp 121–125. Institute of electrical and electronics engineers Inc. https://doi.org/10.1109/LARS-SBR-WRE48964.2019.00029

Georgievski I, Nguyen TA, Nizamic F, Setz B, Lazovik A, Aiello M (2017) Planning meets activity recognition: service coordination for intelligent buildings. Pervasive Mob Comput 38:110–139. https://doi.org/10.1016/j.pmcj.2017.02.008

Article  Google Scholar 

Girard B, Tabareau N, Pham QC, Berthoz A, Slotine JJ (2008) Where neuroscience and dynamic system theory meet autonomous robotics: a contracting basal ganglia model for action selection. Neural Netw 21(4):628–641. https://doi.org/10.1016/j.neunet.2008.03.009

CAS  Article  PubMed  Google Scholar 

Grisetti G, Stachniss C, Burgard W (2007) Improved techniques for grid mapping with Rao-Blackwellized particle filters. IEEE Trans Robot 23(1):34–46

Article  Google Scholar 

Halje P, Brys I, Mariman JJ, Da Cunha C, Fuentes R, Petersson P (2019) Oscillations in cortico-basal ganglia circuits: implications for Parkinson’s disease and other neurologic and psychiatric conditions. J Neurophysiol 122(1):203–231. https://doi.org/10.1152/jn.00590.2018

Article  PubMed  Google Scholar 

Haykin SS (2008) Neural networks: a comprehensive foundation, 3rd edn. Pearson, London

Google Scholar 

Herath S, Harandi M, Porikli F (2017) Going deeper into action recognition: a survey. Image Vis Comput 60:4–21. https://doi.org/10.1016/j.imavis.2017.01.010

Article  Google Scholar 

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

CAS  Article  PubMed  Google Scholar 

Hwu TJ, Krichmar JL (2022) Neurorobotics: neuroscience and robots. In: Cangelosi A, Asada M (eds) Cognitive robotics, Chap 2. MIT Press, Cambridge, pp 19–40

Chapter  Google Scholar 

Imran J, Raman B (2020) Evaluating fusion of RGB-D and inertial sensors for multimodal human action recognition. J Ambient Intell Humaniz Comput 11(1):189–208. https://doi.org/10.1007/s12652-019-01239-9

Article  Google Scholar 

Kita H, Kita T (2011) Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia. J Neurosci 31(28):10311–10322. https://doi.org/10.1523/JNEUROSCI.0915-11.2011

CAS  Article  PubMed  PubMed Central  Google Scholar 

Koenig N, Howard A (2004) Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS)(IEEE Cat. No. 04CH37566), vol 3, pp 2149–2154. IEEE

Könings B, Schaub F, Weber M (2016) Privacy and trust in ambient intelligent environments. In: Next generation intelligent environments. Springer, pp 133–164

Koprich JB, Kalia LV, Brotchie JM (2017) Animal models of alpha-synucleinopathy for Parkinson disease drug development. Nat Rev Neurosci 18(9):515–529. https://doi.org/10.1038/nrn.2017.75

CAS  Article  PubMed  Google Scholar 

Krichmar JL (2018) Neurorobotics-a thriving community and a promising pathway toward intelligent cognitive robots. Front Neurorobotics 12:42

Article  Google Scholar 

Kumaravelu K, Brocker DT, Grill WM (2016) A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson’s disease. J Comput Neurosci 40(2):207–229. https://doi.org/10.1007/s10827-016-0593-9

Article  PubMed  PubMed Central  Google Scholar 

Lakshmanan V, Robinson S, Munn M (2020) Machine learning design patterns. O’Reilly Media, Sebastopol

Google Scholar 

Lánský P, Rodriguez R, Sacerdote L (2004) Mean instantaneous firing frequency is always higher than the firing rate. Neural Comput 16(3):477–489. https://doi.org/10.1162/089976604772744875

Article  PubMed  Google Scholar 

Li J, Li Z, Chen F, Bicchi A, Sun Y, Fukuda T (2019) Combined sensing, cognition, learning, and control for developing future neuro-robotics systems: a survey. IEEE Trans Cognit Dev Syst 11(2):148–161. https://doi.org/10.1109/TCDS.2019.2897618

Article  Google Scholar 

Li Z, Liu F, Yang W, Peng S, Zhou J (2021) A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2021.3084827

Article  PubMed  PubMed Central  Google Scholar 

Liang Y, Yan Z, Zhang Q, Liang H, Ji X, Liu Y, Liu R (2019) A decision-making model based on basal ganglia account of action prediction. In: IEEE international conference on robotics and biomimetics, ROBIO 2019. Institute of electrical and electronics engineers Inc., pp 1705–1710 https://doi.org/10.1109/ROBIO49542.2019.8961538

Liénard J, Girard B (2014) A biologically constrained model of the whole basal ganglia addressing the paradoxes of connections and selection. J Comput Neurosci 36(3):445–468. https://doi.org/10.1007/s10827-013-0476-2

Article  PubMed  Google Scholar 

Li K, Wu J, Zhao X, Tan M (2019) Real-time human-robot interaction for a service robot based on 3D human activity recognition and human-mimicking decision mechanism. In: 8th annual IEEE international conference on cyber technology in automation, control and intelligent systems, CYBER 2018, pp 498–503. Institute of electrical and electronics engineers Inc. https://doi.org/10.1109/CYBER.2018.8688272

Lu Y, Velipasalar S (2019) Autonomous human activity classification from wearable multi-modal sensors. IEEE Sens J 19(23):11403–11412. https://doi.org/10.1109/JSEN.2019.2934678

Article  Google Scholar 

Luu DK, Nguyen AT, Jiang M, Xu J, Drealan MW, Cheng J, Keefer EW, Zhao Q, Yang Z (2021) Deep learning-based approaches for decoding motor intent from peripheral nerve signals. Front Neurosci 15:667907

Article  Google Scholar 

Ma CY, Chen MH, Kira Z, AlRegib G (2019) TS-LSTM and temporal-inception: Exploiting spatiotemporal dynamics for activity recognition. Signal Processing: Image Communication 71:76–87. https://doi.org/10.1016/j.image.2018.09.003

Article  Google Scholar 

Markowitz JE, Gillis WF, Beron CC, Neufeld SQ, Robertson K, Bhagat ND, Peterson RE, Peterson E, Hyun M, Linderman SW, Sabatini BL, Datta SR (2018) The striatum organizes 3D behavior via moment-to-moment action selection. Cell 174(1):44–58. https://doi.org/10.1016/j.cell.2018.04.019

CAS  Article  PubMed  PubMed Central  Google Scholar 

McGregor MM, Nelson AB (2019) Circuit mechanisms of Parkinson’s disease. Neuron 101(6):1042–1056. https://doi.org/10.1016/j.neuron.2019.03.004

CAS  Article  PubMed  Google Scholar 

Merk T, Peterson V, Köhler R, Haufe S, Richardson RM, Neumann WJ (2022) Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation. Exp Neurol. https://doi.org/10.1016/j.expneurol.2022.113993

Article  PubMed  Google Scholar 

Mojarad R, Attal F, Chibani A, Fiorini SR, Amirat Y (2018) Hybrid approach for human activity recognition by ubiquitous robots. In: IEEE international conference on intelligent robots and systems. Institute of electrical and electronics engineers Inc., pp 5660–5665 https://doi.org/10.1109/IROS.2018.8594173

Mora-Sánchez A, Dreyfus G, Vialatte FB (2019) Scale-free behaviour and metastable brain-state switching driven by human cognition, an empirical approach. Cogn Neurodyn 13(5):437–452

Article  Google Scholar 

Mulcahy G, Atwood B, Kuznetsov A (2020) Basal ganglia role in learning rewarded actions and executing previously learned choices: healthy and diseased states. PLoS ONE 15(2):1–26

Article  Google Scholar 

Oh SL, Hagiwara Y, Raghavendra U, Yuvaraj R, Arunkumar N, Murugappan M, Acharya UR (2018) A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3689-5

Article  Google Scholar 

Ordóñez F, Roggen D (2016) Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1):115. https://doi.org/10.3390/s16010115

Article  PubMed Central  Google Scholar 

Pimentel JM, Moioli RC, De Araujo MF, Ranieri CM, Romero RA, Broz F, Vargas PA (2021) Neuro4pd: an initial neurorobotics model of Parkinson’s disease. Front Neurorobotics 88

Prescott TJ, Montes González FM, Gurney K, Humphries MD, Redgrave P (2006) A robot model of the basal ganglia: behavior and intrinsic processing. Neural Netw 19(1):31–61. https://doi.org/10.1016/j.neunet.2005.06.049

Article  PubMed  Google Scholar 

Pronin S, Wellacott L, Pimentel J, Moioli RC, Vargas PA (2021) Neurorobotic models of neurological disorders: a mini review. Front Neurorobotics 15:26

Article  Google Sch

留言 (0)

沒有登入
gif