GABA facilitates spike propagation through branch points of sensory axons in the spinal cord

Goulding, M. Circuits controlling vertebrate locomotion: moving in a new direction. Nat. Rev. Neurosci. 10, 507–518 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Capaday, C. & Stein, R. B. Amplitude modulation of the soleus H-reflex in the human during walking and standing. J. Neurosci. 6, 1308–1313 (1986).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bennett, D. J., De Serres, S. J. & Stein, R. B. Gain of the triceps surae stretch reflex in decerebrate and spinal cats during postural and locomotor activities. J. Physiol. 496, 837–850 (1996).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Andrechek, E. R. et al. ErbB2 is required for muscle spindle and myoblast cell survival. Mol. Cell. Biol. 22, 4714–4722 (2002).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Betley, J. N. et al. Stringent specificity in the construction of a GABAergic presynaptic inhibitory circuit. Cell 139, 161–174 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fink, A. J. et al. Presynaptic inhibition of spinal sensory feedback ensures smooth movement. Nature 509, 43–48 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hughes, D. I. et al. P boutons in lamina IX of the rodent spinal cord express high levels of glutamic acid decarboxylase-65 and originate from cells in deep medial dorsal horn. Proc. Natl Acad. Sci. USA 102, 9038–9043 (2005).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Eccles, J. C., Eccles, R. M. & Magni, F. Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys. J. Physiol. 159, 147–166 (1961).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Engelman, H. S. & MacDermott, A. B. Presynaptic ionotropic receptors and control of transmitter release. Nat. Rev. Neurosci. 5, 135–145 (2004).

CAS  PubMed  Article  Google Scholar 

Rudomin, P. & Schmidt, R. F. Presynaptic inhibition in the vertebrate spinal cord revisited. Exp. Brain Res. 129, 1–37 (1999).

CAS  PubMed  Article  Google Scholar 

Rossignol, S., Beloozerova, I., Gossard, J.P. & Dubuc, R. Presynaptc mechanisms during locomotion. in Presynaptic Inhibition and Neuron Control (eds. Rudmon, P., Romo, R. & Mendell, L. M.) 385–397 (Oxford University Press, 1998).

Ueno, M. et al. Corticospinal circuits from the sensory and motor cortices differentially regulate skilled movements through distinct spinal interneurons. Cell Rep. 23, 1286–1300 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jankowska, E., McCrea, D., Rudomin, P. & Sykova, E. Observations on neuronal pathways subserving primary afferent depolarization. J. Neurophysiol. 46, 506–516 (1981).

CAS  PubMed  Article  Google Scholar 

Zimmerman, A. L. et al. Distinct modes of presynaptic inhibition of cutaneous afferents and their functions in behavior. Neuron 102, 420–434 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lucas-Osma, A. M. et al. Extrasynaptic α5GABAA receptors on proprioceptive afferents produce a tonic depolarization that modulates sodium channel function in the rat spinal cord. J. Neurophysiol. 120, 2953–2974 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fink, A. J. Exploring a Behavioral Role for Presynaptic Inhibition at Spinal Sensory-Motor Synapses. PhD thesis, Columbia Univ. (2013).

Stuart, G. J. & Redman, S. J. The role of GABAA and GABAB receptors in presynaptic inhibition of Ia EPSPs in cat spinal motoneurones. J. Physiol. 447, 675–692 (1992).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bardoni, R. et al. Pre- and postsynaptic inhibitory control in the spinal cord dorsal horn. Ann. N. Y. Acad. Sci. 1279, 90–96 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Szabadics, J. et al. Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 311, 233–235 (2006).

CAS  PubMed  Article  Google Scholar 

Howell, R. D. & Pugh, J. R. Biphasic modulation of parallel fibre synaptic transmission by co-activation of presynaptic GABAA and GABAB receptors in mice. J. Physiol. 594, 3651–3666 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Trigo, F. F., Marty, A. & Stell, B. M. Axonal GABAA receptors. Eur. J. Neurosci. 28, 841–848 (2008).

PubMed  Article  Google Scholar 

Barron, D. H. & Matthews, B. H. The interpretation of potential changes in the spinal cord. J. Physiol. 92, 276–321 (1938).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cattaert, D. & El Manira, A. Shunting versus inactivation: analysis of presynaptic inhibitory mechanisms in primary afferents of the crayfish. J. Neurosci. 19, 6079–6089 (1999).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Alvarez, F. J., Taylor-Blake, B., Fyffe, R. E., De Blas, A. L. & Light, A. R. Distribution of immunoreactivity for the β2 and β3 subunits of the GABAA receptor in the mammalian spinal cord. J. Comp. Neurol. 365, 392–412 (1996).

CAS  PubMed  Article  Google Scholar 

Walmsley, B., Graham, B. & Nicol, M. J. Serial E-M and simulation study of presynaptic inhibition along a group Ia collateral in the spinal cord. J. Neurophysiol. 74, 616–623 (1995).

CAS  PubMed  Article  Google Scholar 

Debanne, D., Campanac, E., Bialowas, A., Carlier, E. & Alcaraz, G. Axon physiology. Physiol. Rev. 91, 555–602 (2011).

CAS  PubMed  Article  Google Scholar 

Goldstein, S. S. & Rall, W. Changes of action potential shape and velocity for changing core conductor geometry. Biophys. J. 14, 731–757 (1974).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Burke, R. E. & Glenn, L. L. Horseradish peroxidase study of the spatial and electrotonic distribution of group Ia synapses on type-identified ankle extensor motoneurons in the cat. J. Comp. Neurol. 372, 465–485 (1996).

CAS  PubMed  Article  Google Scholar 

Henneman, E., Luscher, H. R. & Mathis, J. Simultaneously active and inactive synapses of single Ia fibres on cat spinal motoneurones. J. Physiol. 352, 147–161 (1984).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wall, P. D. & McMahon, S. B. Long range afferents in rat spinal cord. III. Failure of impulse transmission in axons and relief of the failure after rhizotomy of dorsal roots. Philos. Trans. R. Soc. Lond. B Biol. Sci. 343, 211–223 (1994).

CAS  PubMed  Article  Google Scholar 

Swadlow, H. A., Kocsis, J. D. & Waxman, S. G. Modulation of impulse conduction along the axonal tree. Annu. Rev. Biophys. Bioeng. 9, 143–179 (1980).

CAS  PubMed  Article  Google Scholar 

Wall, P. D. Excitability changes in afferent fibre terminations and their relation to slow potentials. J. Physiol. 142, i3–i21 (1958).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wu, H. et al. Distinct subtypes of proprioceptive dorsal root ganglion neurons regulate adaptive proprioception in mice. Nat. Commun. 12, 1026 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Watson, A. H. & Bazzaz, A. A. GABA and glycine-like immunoreactivity at axoaxonic synapses on 1a muscle afferent terminals in the spinal cord of the rat. J. Comp. Neurol. 433, 335–348 (2001).

CAS  PubMed  Article  Google Scholar 

Lucas-Osma, A. M. et al. 5-HT1D receptors inhibit the monosynaptic stretch reflex by modulating C-fiber activity. J. Neurophysiol. 121, 1591–1608 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Redman, S. Quantal analysis of synaptic potentials in neurons of the central nervous system. Physiol. Rev. 70, 165–198 (1990).

CAS  PubMed  Article  Google Scholar 

Zbili, M. & Debanne, D. Past and future of analog–digital modulation of synaptic transmission. Front. Cell. Neurosci. 13, 160 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Serrano-Regal, M. P. et al. Oligodendrocyte differentiation and myelination is potentiated via GABAB receptor activation. Neuroscience 439, 163–180 (2020).

留言 (0)

沒有登入
gif