Odontogenesis-Associated Phosphoprotein (ODAPH) Overexpression in Ameloblasts Disrupts Enamel Formation via Inducing Abnormal Mineralization of Enamel in Secretory Stage

Lacruz RS (2017) Enamel: molecular identity of its transepithelial ion transport system. Cell Calcium 65:1–7. https://doi.org/10.1016/j.ceca.2017.03.006

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lacruz RS, Nakayama Y, Holcroft J, Nguyen V, Somogyi-Ganss E, Snead ML, White SN, Paine ML, Ganss B (2012) Targeted overexpression of amelotin disrupts the microstructure of dental enamel. PLoS ONE 7:e35200. https://doi.org/10.1371/journal.pone.0035200

CAS  Article  PubMed  PubMed Central  Google Scholar 

Pham CD, Smith CE, Hu Y, Hu JC, Simmer JP, Chun YP (2017) Endocytosis and enamel formation. Front Physiol 8:529. https://doi.org/10.3389/fphys.2017.00529

Article  PubMed  PubMed Central  Google Scholar 

Zhu L, Liu H, Witkowska HE, Huang Y, Tanimoto K, Li W (2014) Preferential and selective degradation and removal of amelogenin adsorbed on hydroxyapatites by MMP20 and KLK4 in vitro. Front Physiol 5:268. https://doi.org/10.3389/fphys.2014.00268

Article  PubMed  PubMed Central  Google Scholar 

Shin NY, Yamazaki H, Beniash E, Yang X, Margolis SS, Pugach MK, Simmer JP, Margolis HC (2020) Amelogenin phosphorylation regulates tooth enamel formation by stabilizing a transient amorphous mineral precursor. J Biol Chem 295:1943–1959. https://doi.org/10.1074/jbc.RA119.010506

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lacruz RS, Habelitz S, Wright JT, Paine ML (2017) Dental enamel formation and implications for oral health and disease. Physiol Rev 97:939–993. https://doi.org/10.1152/physrev.00030.2016

Article  PubMed  PubMed Central  Google Scholar 

Simmer JP, Papagerakis P, Smith CE, Fisher DC, Rountrey AN, Zheng L, Hu JC (2010) Regulation of dental enamel shape and hardness. J Dent Res 89:1024–1038. https://doi.org/10.1177/0022034510375829

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bartlett JD (2013) Dental enamel development: proteinases and their enamel matrix substrates. ISRN Dent 2013:684607. https://doi.org/10.1155/2013/684607

Article  PubMed  PubMed Central  Google Scholar 

Hu Y, Smith CE, Richardson AS, Bartlett JD, Hu JC, Simmer JP (2016) MMP20, KLK4, and MMP20/KLK4 double null mice define roles for matrix proteases during dental enamel formation. Mol Genet Genomic Med 4:178–196. https://doi.org/10.1002/mgg3.194

CAS  Article  PubMed  Google Scholar 

Springer MS, Starrett J, Morin PA, Lanzetti A, Hayashi C, Gatesy J (2016) Inactivation of C4orf26 in toothless placental mammals. Mol Phylogenet Evol 95:34–45. https://doi.org/10.1016/j.ympev.2015.11.002

CAS  Article  PubMed  Google Scholar 

Liang T, Hu Y, Kawasaki K, Zhang H, Zhang C, Saunders TL, Simmer JP, Hu JC (2021) Odontogenesis-associated phosphoprotein truncation blocks ameloblast transition into maturation in Odaph(C41*/C41*) mice. Sci Rep 11:1132. https://doi.org/10.1038/s41598-020-80912-y

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fouillen A, Dos Santos NJ, Mary C, Castonguay JD, Moffatt P, Baron C, Nanci A (2017) Interactions of AMTN, ODAM and SCPPPQ1 proteins of a specialized basal lamina that attaches epithelial cells to tooth mineral. Sci Rep 7:46683. https://doi.org/10.1038/srep46683

Article  PubMed  PubMed Central  Google Scholar 

Li C, Gao Y, Xu Z, Tian Y, Mu H, Yu C, Gao Y, Zhang L (2021) Expression and localization of amelotin, laminin gamma2 and odontogenesis-associated phosphoprotein (ODAPH) on the basal lamina and junctional epithelium. J Mol Histol. https://doi.org/10.1007/s10735-021-10026-w

Article  PubMed  PubMed Central  Google Scholar 

Smith CEL, Poulter JA, Antanaviciute A, Kirkham J, Brookes SJ, Inglehearn CF, Mighell AJ (2017) Amelogenesis imperfecta; genes, proteins, and pathways. Front Physiol 8:435. https://doi.org/10.3389/fphys.2017.00435

Article  PubMed  PubMed Central  Google Scholar 

Parry David A, Brookes Steven J, Logan Clare V, Poulter James A, El-Sayed W, Al-Bahlani S, Al Harasi S, Sayed J, El Raïf M, Shore Roger C, Dashash M, Barron M, Morgan Joanne E, Carr Ian M, Taylor Graham R, Johnson Colin A, Aldred Michael J, Dixon Michael J, Wright JT, Kirkham J, Inglehearn Chris F, Mighell Alan J (2012) Mutations in C4orf26, encoding a peptide with in vitro hydroxyapatite crystal nucleation and growth activity, cause amelogenesis imperfecta. Am J Hum Genet 91:565–571. https://doi.org/10.1016/j.ajhg.2012.07.020

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ji Y, Li C, Tian Y, Gao Y, Dong Z, Xiang L, Xu Z, Gao Y, Zhang L (2021) Maturation stage enamel defects in Odontogenesis-associated phosphoprotein (Odaph) deficient mice. Dev Dyn 250:1505–1517. https://doi.org/10.1002/dvdy.336

CAS  Article  PubMed  Google Scholar 

Aryal YP, Lee ES, Kim TY, Sung S, Kim JY, An SY, Jung JK, Ha JH, Suh JY, Yamamoto H, Sohn WJ, Cho SW, Lee Y, An CH, Kim JY (2020) Stage-specific expression patterns of ER stress-related molecules in mice molars: implications for tooth development. Gene Expr Patterns 37:119130. https://doi.org/10.1016/j.gep.2020.119130

CAS  Article  PubMed  Google Scholar 

Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89–102. https://doi.org/10.1038/nrm3270

CAS  Article  PubMed  Google Scholar 

Kim C, Kim B (2018) Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: a review. Nutrients. https://doi.org/10.3390/nu10081021

Article  PubMed  PubMed Central  Google Scholar 

Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13:184–190. https://doi.org/10.1038/ncb0311-184

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gibson CW, Yuan ZA, Hall B, Longenecker G, Chen E, Thyagarajan T, Sreenath T, Wright JT, Decker S, Piddington R, Harrison G, Kulkarni AB (2001) Amelogenin-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem 276:31871–31875. https://doi.org/10.1074/jbc.M104624200

CAS  Article  PubMed  Google Scholar 

Hu Y, Smith CE, Cai Z, Donnelly LA, Yang J, Hu JC, Simmer JP (2016) Enamel ribbons, surface nodules, and octacalcium phosphate in C57BL/6 Amelx(-/-) mice and Amelx(+/-) lyonization. Mol Genet Genomic Med 4:641–661. https://doi.org/10.1002/mgg3.252

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wright JT, Li Y, Suggs C, Kuehl MA, Kulkarni AB, Gibson CW (2011) The role of amelogenin during enamel-crystallite growth and organization in vivo. Eur J Oral Sci 119(Suppl 1):65–69. https://doi.org/10.1111/j.1600-0722.2011.00883.x

Article  PubMed  PubMed Central  Google Scholar 

Lee KE, Seymen F, Ko J, Yildirim M, Tuna EB, Gencay K, Kim JW (2013) RUNX2 mutations in cleidocranial dysplasia. Genet Mol Res 12:4567–4574. https://doi.org/10.4238/2013.October.15.5

CAS  Article  PubMed  Google Scholar 

Lu H, Zeng B, Yu D, Jing X, Hu B, Zhao W, Wang Y (2015) Complex dental anomalies in a belatedly diagnosed cleidocranial dysplasia patient. Imaging Sci Dent 45:187–192. https://doi.org/10.5624/isd.2015.45.3.187

Article  PubMed  PubMed Central  Google Scholar 

Shibata A, Machida J, Yamaguchi S, Kimura M, Tatematsu T, Miyachi H, Matsushita M, Kitoh H, Ishiguro N, Nakayama A, Higashi Y, Shimozato K, Tokita Y (2016) Characterisation of novel RUNX2 mutation with alanine tract expansion from Japanese cleidocranial dysplasia patient. Mutagenesis 31:61–67. https://doi.org/10.1093/mutage/gev057

CAS  Article  PubMed  Google Scholar 

Yadav MC, de Oliveira RC, Foster BL, Fong H, Cory E, Narisawa S, Sah RL, Somerman M, Whyte MP, Millan JL (2012) Enzyme replacement prevents enamel defects in hypophosphatasia mice. J Bone Miner Res 27:1722–1734. https://doi.org/10.1002/jbmr.1619

CAS  Article  PubMed  Google Scholar 

Fukuta Y, Totsuka M, Fukuta Y, Takeda Y, Yoshida Y, Niitsu J, Yamamoto H (2001) Histological and analytical studies of a tooth in a patient with cleidocranial dysostosis. J Oral Sci 43:85–89. https://doi.org/10.2334/josnusd.43.85

CAS  Article  PubMed  Google Scholar 

Ziros PG, Basdra EK, Papavassiliou AG (2008) Runx2: of bone and stretch. Int J Biochem Cell Biol 40:1659–1663. https://doi.org/10.1016/j.biocel.2007.05.024

CAS  Article  PubMed  Google Scholar 

Chu Q, Gao Y, Gao X, Dong Z, Song W, Xu Z, Xiang L, Wang Y, Zhang L, Li M, Gao Y (2018) Ablation of Runx2 in ameloblasts suppresses enamel maturation in tooth development. Sci Rep 8:9594. https://doi.org/10.1038/s41598-018-27873-5

CAS  Article  PubMed  PubMed Central  Google Scholar 

Vimalraj S (2020) Alkaline phosphatase: structure, expression and its function in bone mineralization. Gene 754:144855. https://doi.org/10.1016/j.gene.2020.144855

CAS  Article  PubMed  Google Scholar 

Millan JL, Whyte MP (2016) Alkaline phosphatase and hypophosphatasia. Calcif Tissue Int 98:398–416. https://doi.org/10.1007/s00223-015-0079-1

CAS  Article  PubMed  Google Scholar 

Li W, Zhang S, Liu J, Liu Y, Liang Q (2019) Vitamin K2 stimulates MC3T3E1 osteoblast differentiation and mineralization through autophagy induction. Mol Med Rep 19:3676–3684. https://doi.org/10.3892/mmr.2019.10040

CAS  Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif