New Emerging Biomarkers for Bone Disease: Sclerostin and Dickkopf-1 (DKK1)

Takada J et al (2020) Relationship between P1NP, a biochemical marker of bone turnover, and bone mineral density in patients transitioned from alendronate to romosozumab or teriparatide: a post hoc analysis of the STRUCTURE trial. J Bone Miner Metab 38(3):310–315

CAS  PubMed  Article  Google Scholar 

Tian A et al (2019) Reference markers of bone turnover for prediction of fracture: a meta-analysis. J Orthop Surg Res 14(1):68

PubMed  PubMed Central  Article  Google Scholar 

Willert K, Jones KA (2006) Wnt signaling: is the party in the nucleus? Genes Dev 20(11):1394–1404

CAS  PubMed  Article  Google Scholar 

Lojk J, Marc J (2021) Roles of non-canonical wnt signalling pathways in bone biology. Int J Mol Sci 22(19):10840

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mulati M et al (2020) The long noncoding RNA Crnde regulates osteoblast proliferation through the Wnt/beta-catenin signaling pathway in mice. Bone 130:115076

CAS  PubMed  Article  Google Scholar 

Geng A et al (2020) A novel function of R-spondin1 in regulating estrogen receptor expression independent of Wnt/beta-catenin signaling. Elife. https://doi.org/10.7554/eLife.56434

Article  PubMed  PubMed Central  Google Scholar 

Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149(6):1192–1205

CAS  PubMed  Article  Google Scholar 

Chen M et al (2021) Morusin induces osteogenic differentiation of bone marrow mesenchymal stem cells by canonical Wnt/beta-catenin pathway and prevents bone loss in an ovariectomized rat model. Stem Cell Res Ther 12(1):173

PubMed  PubMed Central  Article  Google Scholar 

Galli C et al (2012) The importance of WNT pathways for bone metabolism and their regulation by implant topography. Eur Cell Mater 24:46–59

CAS  PubMed  Article  Google Scholar 

Peng J et al (2021) Bone Sclerostin and Dickkopf-related protein-1 are positively correlated with bone mineral density, bone microarchitecture, and bone strength in postmenopausal osteoporosis. BMC Musculoskelet Disord 22(1):480

CAS  PubMed  PubMed Central  Article  Google Scholar 

Robling AG, Bonewald LF (2020) The osteocyte: new insights. Annu Rev Physiol 82:485–506

CAS  PubMed  PubMed Central  Article  Google Scholar 

Marvin MJ et al (2001) Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev 15(3):316–327

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kim J et al (2020) Sclerostin inhibits Wnt signaling through tandem interaction with two LRP6 ectodomains. Nat Commun 11(1):5357

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kikuchi A (2000) Regulation of beta-catenin signaling in the Wnt pathway. Biochem Biophys Res Commun 268(2):243–248

CAS  PubMed  Article  Google Scholar 

Lee DK et al (2006) Activation of the canonical Wnt/beta-catenin pathway enhances monocyte adhesion to endothelial cells. Biochem Biophys Res Commun 347(1):109–116

CAS  PubMed  Article  Google Scholar 

Salbach-Hirsch J et al (2015) Structural and functional insights into sclerostin-glycosaminoglycan interactions in bone. Biomaterials 67:335–345

CAS  PubMed  Article  Google Scholar 

Brogi S et al (2017) Activation of the Wnt pathway by small peptides: rational design synthesis and biological evaluation. Chem Med Chem 12(24):2074–2085

CAS  PubMed  Article  Google Scholar 

Niehrs C (2006) Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25(57):7469–7481

CAS  PubMed  Article  Google Scholar 

Ahn VE et al (2011) Structural basis of Wnt signaling inhibition by Dickkopf binding to LRP5/6. Dev Cell 21(5):862–873

CAS  PubMed  PubMed Central  Article  Google Scholar 

Khalili S, Rasaee MJ, Bamdad T (2017) 3D structure of DKK1 indicates its involvement in both canonical and non-canonical Wnt pathways. Mol Biol (Mosk) 51(1):180–192

CAS  Article  Google Scholar 

Robling AG et al (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283(9):5866–5875

CAS  PubMed  Article  Google Scholar 

Krishnan V, Bryant HU, Macdougald OA (2006) Regulation of bone mass by Wnt signaling. J Clin Invest 116(5):1202–1209

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cosman F et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375(16):1532–1543

CAS  PubMed  Article  Google Scholar 

Chapurlat RD, Confavreux CB (2016) Novel biological markers of bone: from bone metabolism to bone physiology. Rheumatology (Oxford) 55(10):1714–1725

Article  Google Scholar 

Cavalier E et al (2016) The role of biochemical of bone turnover markers in osteoporosis and metabolic bone disease: a consensus paper of the Belgian Bone Club. Osteoporos Int 27(7):2181–2195

CAS  PubMed  Article  Google Scholar 

Weivoda MM, Youssef SJ, Oursler MJ (2017) Sclerostin expression and functions beyond the osteocyte. Bone 96:45–50

CAS  PubMed  Article  Google Scholar 

Martinez-Gil N et al (2021) Genetics and genomics of SOST: functional analysis of variants and genomic regulation in osteoblasts. Int J Mol Sci 22(2):489

CAS  PubMed Central  Article  Google Scholar 

Almroth G et al (2016) Sclerostin, TNF-alpha and Interleukin-18 Correlate and are together with klotho related to other growth factors and cytokines in haemodialysis patients. Scand J Immunol 83(1):58–63

CAS  PubMed  Article  Google Scholar 

Deepak V, Kayastha P, McNamara LM (2017) Estrogen deficiency attenuates fluid flow-induced [Ca(2+)]i oscillations and mechanoresponsiveness of MLO-Y4 osteocytes. FASEB J 31(7):3027–3039

CAS  PubMed  Article  Google Scholar 

Galea GL et al (2013) Estrogen receptor alpha mediates proliferation of osteoblastic cells stimulated by estrogen and mechanical strain, but their acute down-regulation of the Wnt antagonist Sost is mediated by estrogen receptor beta. J Biol Chem 288(13):9035–9048

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhang Y et al (2004) The LRP5 high-bone-mass G171V mutation disrupts LRP5 interaction with Mesd. Mol Cell Biol 24(11):4677–4684

CAS  PubMed  PubMed Central  Article  Google Scholar 

Delanaye P et al (2018) Sclerostin and chronic kidney disease: the assay impacts what we (thought to) know. Nephrol Dial Transplant 33(8):1404–1410

CAS  PubMed  Article  Google Scholar 

van Lierop A et al (2012) The role of sclerostin in the pathophysiology of sclerosing bone dysplasias. Clinical Reviews in Bone and Mineral Metabolism 10:108–116

CAS  Article  Google Scholar 

McNulty M et al (2011) Determination of serum and plasma sclerostin concentrations by enzyme-linked immunoassays. J Clin Endocrinol Metab 96(7):E1159–E1162

PubMed  PubMed Central  Article  Google Scholar 

Piec I et al (2016) How accurate is your sclerostin measurement? Comparison between three commercially available sclerostin ELISA kits. Calcif Tissue Int 98(6):546–555

CAS  PubMed  PubMed Central  Article  Google Scholar 

Costa AG et al (2014) Comparison of two commercially available ELISAs for circulating sclerostin. Osteoporos Int 25(5):1547–1554

CAS  PubMed  Article  Google Scholar 

Kerschan-Schindl K et al (2022) Circulating bioactive sclerostin levels in an Austrian population-based cohort. Wien Klin Wochenschr 134(1–2):39–44

CAS  PubMed  Article  Google Scholar 

Drake MT et al (2018) Validation of a novel, rapid, high precision sclerostin assay not confounded by sclerostin fragments. Bone 111:36–43

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mare A et al (2019) Clinical inference of serum and bone sclerostin levels in patients with end-stage kidney disease. J Clin Med 8(12):2027

PubMed Central  Article 

留言 (0)

沒有登入
gif