Microfluidic wearable electrochemical sweat sensors for health monitoring

Ascorbic acid10–50 μMImmunity issuesAscorbate oxidaseCyclic voltammetry8080. J. R. Sempionatto, A. A. Khorshed, A. Ahmed, A. N. De Loyola e Silva, A. Barfidokht, L. Yin, K. Y. Goud, M. A. Mohamed, E. Bailey, and J. May, “Epidermal enzymatic biosensors for sweat vitamin C: Toward personalized nutrition,” ACS Sens. 5(6), 1804–1813 (2020). https://doi.org/10.1021/acssensors.0c00604Uric acid2–10 mMRenal dysfunctionUricaseCyclic voltammetry8181. V. N. Ataide, D. P. Rocha, A. de Siervo, T. R. L. C. Paixão, R. A. A. Munoz, and L. Angnes, “Additively manufactured carbon/black-integrated polylactic acid 3D printed sensor for simultaneous quantification of uric acid and zinc in sweat,” Microchim. Acta 188(11), 1–11 (2021). https://doi.org/10.1007/s00604-021-05007-5Cortisol10–140 ng mL−1PressureNanomaterialAmperometry8282. S. Madhu, A. J. Anthuuvan, S. Ramasamy, P. Manickam, S. Bhansali, P. Nagamony, and V. Chinnuswamy, “ZnO nanorod integrated flexible carbon fibers for sweat cortisol detection,” ACS Appl. Electron. Mater. 2(2), 499–509 (2020). https://doi.org/10.1021/acsaelm.9b00730Tyrosine5–240 μMMuscle issuesNanomaterialCyclic voltammetry/Amperometry8383. Z. Wang, J. Shin, J.-H. Park, H. Lee, D.-H. Kim, and H. Liu, “Engineering materials for electrochemical sweat sensing,” Adv. Funct. Mater. 31(12), 2008130 (2021). https://doi.org/10.1002/adfm.202008130Lactate5–20 mMAnerobic metabolismLactate oxidaseAmperometry8484. P. J. Lamas-Ardisana, O. A. Loaiza, L. Añorga, E. Jubete, M. Borghei, V. Ruiz, E. Ochoteco, G. Cabañero, and H. J. Grande, “Disposable amperometric biosensor based on lactate oxidase immobilised on platinum nanoparticle-decorated carbon nanofiber and poly (diallyldimethylammonium chloride) films,” Biosens. Bioelectron. 56, 345–351 (2014). https://doi.org/10.1016/j.bios.2014.01.047Glucose10–200 μMDiabetesGlucose oxidaseAmperometry8585. M. Xu, Y. Zhu, S. Gao, Z. Zhang, Y. Gu, and X. Liu, “Reduced graphene oxide-coated silica nanospheres as flexible enzymatic biosensors for detection of glucose in sweat,” ACS Appl. Nano Mater. 4(11), 12442–12452 (2021). https://doi.org/10.1021/acsanm.1c02887K+1–19 mMMuscle discomfortPotassium ion selective membranePotentiometric analysis8686. Q. An, S. Gan, J. Xu, Y. Bao, T. Wu, H. Kong, L. Zhong, Y. Ma, Z. Song, and L. Niu, “A multichannel electrochemical all-solid-state wearable potentiometric sensor for real-time sweat ion monitoring,” Electrochem. Commun. 107, 106553 (2019). https://doi.org/10.1016/j.elecom.2019.106553Na+10–100 mMCystic fibrosis/dehydrationSodium ion selective membranePotentiometric analysis8787. M. Parrilla, J. Ferré, T. Guinovart, and F. J. Andrade, “Wearable potentiometric sensors based on commercial carbon fibres for monitoring sodium in sweat,” Electroanalysis 28(6), 1267–1275 (2016). https://doi.org/10.1002/elan.201600070Cl−10–100 mMCystic fibrosis/dehydrationAg/AgClPotentiometric analysis8888. Y. Ichimura, T. Kuritsubo, K. Nagamine, A. Nomura, I. Shitanda, and S. Tokito, “A fully screen-printed potentiometric chloride ion sensor employing a hydrogel-based touchpad for simple and non-invasive daily electrolyte analysis,” Anal. Bioanal. Chem. 413(7), 1883–1891 (2021). https://doi.org/10.1007/s00216-021-03156-3NH4+0.1–1 mMAnerobic metabolismNonactin ionophorePotentiometric analysis8989. T. Guinovart, A. J. Bandodkar, J. R. Windmiller, F. J. Andrade, and J. Wang, “A potentiometric tattoo sensor for monitoring ammonium in sweat,” Analyst 138(22), 7031–7038 (2013). https://doi.org/10.1039/c3an01672bCa2+0.41–12.5 mMHomeostasisCalcium ion selective membranePotentiometric analysis9090. M. Parrilla, M. Cuartero, and G. A. Crespo, “Wearable potentiometric ion sensors,” Trends Anal. Chem. 110, 303–320 (2019). https://doi.org/10.1016/j.trac.2018.11.024Zn2+100–1560 μg l−1Liver damageBismuthSquare wave anodic stripping voltammetry9191. P. C. Ferreira, V. N. Ataide, C. L. S. Chagas, L. Angnes, W. K. T. Coltro, T. R. L. C. Paixão, and W. R. de Araujo, “Wearable electrochemical sensors for forensic and clinical applications,” Trends Anal. Chem. 119, 115622 (2019). https://doi.org/10.1016/j.trac.2019.115622Pb2+<100 μg l−1Toxic effectBismuthSquare wave anodic stripping voltammetry9292. R. R. Silva, P. A. Raymundo-Pereira, A. M. Campos, D. Wilson, C. G. Otoni, H. S. Barud, C. A. R. Costa, R. R. Domeneguetti, D. T. Balogh, and S. J. Ribeiro, “Microbial nanocellulose adherent to human skin used in electrochemical sensors to detect metal ions and biomarkers in sweat,” Talanta 218, 121153 (2020). https://doi.org/10.1016/j.talanta.2020.121153Cd2+<100 μg l−1Toxic effectBismuthSquare wave anodic stripping voltammetry9393. H. Li, J. Li, Z. Yang, Q. Xu, C. Hou, J. Peng, and X. Hu, “Simultaneous determination of ultratrace lead and cadmium by square wave stripping voltammetry with in situ depositing bismuth at Nafion-medical stone doped disposable electrode,” J. Hazard. Mater. 191(1-3), 26–31 (2011). https://doi.org/10.1016/j.jhazmat.2011.04.020pH3–8Skin diseaseConductive polymersPotentiometric analysis9494. J. Weber, A. Kumar, A. Kumar, and S. Bhansali, “Novel lactate and pH biosensor for skin and sweat analysis based on single walled carbon nanotubes,” Sens. Actuators, B 117(1), 308–313 (2006). https://doi.org/10.1016/j.snb.2005.12.025

留言 (0)

沒有登入
gif