The Discovery of the Monoaminergic Innervation of the Cerebellum: Convergence of Divergent and Point-to-Point Systems

Sotelo C, Alvarado-Mallart RM. Growth and differentiation of cerebellar suspensions transplanted into the adult cerebellum of mice with heredodegenerative ataxia. Proc Natl Acad Sci USA. 1986;83:1135–9. https://doi.org/10.1073/pnas.83.4.1135.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mobley P, Greengard P. Evidence for widespread effects of noradrenaline on axon terminals in the rat frontal cortex. Proc Natl Acad Sci USA. 1985;82:945–7. https://doi.org/10.1073/pnas.82.3.945.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mouton PR, Pakkenberg B, Gundersen HJ, Price DL. Absolute number and size of pigmented locus coeruleus neurons in young and aged individuals. J Chem Neuroanat. 1994;7:185–90. https://doi.org/10.1016/0891-0618(94)90028-0.

Article  PubMed  CAS  Google Scholar 

Sharma Y, Xu T, Graf WM, Fobbs A, Sherwood CC, Hof PR, Allman JM, Manaye KF. Comparative anatomy of the locus coeruleus in humans and nonhuman primates. J Comp Neurol. 2010;518:963–71. https://doi.org/10.1002/cne.22249.

Article  PubMed  PubMed Central  Google Scholar 

Swanson LW. The locus coeruleus: A cytoarchitectonic, Golgi and immunohistochemical study in the albino rat. Brain Res. 1976;110:39–56. https://doi.org/10.1016/0006-8993(76)90207-9.

Article  PubMed  CAS  Google Scholar 

Baker KG, Halliday GM, Hornung JP, Geffen LB, Cotton RG, Törk I. Distribution, morphology and number of monoamine-synthesizing and substance P-containing neurons in the human dorsal raphé nucleus. Neuroscience. 1991;42:757–75. https://doi.org/10.1016/0306-4522(91)90043-n.

Article  PubMed  CAS  Google Scholar 

Ishimura K, Takeuchi Y, Fujiwara K, Tominaga M, Yoshioka H, Sawada T. Quantitative analysis of the distribution of serotonin-immunoreactive cell bodies in the mouse brain. Neurosci Lett. 1988;91:265–70. https://doi.org/10.1016/0304-3940(88)90691-x.

Article  PubMed  CAS  Google Scholar 

Aldahmash A. Cell numbers in the dorsal and median raphé nuclei of AS and AS/AGU rats. Biomed Res. 2010;21:15–22. https://www.alliedacademies.org/articles/cell-numbers-in-the-dorsal-and-median-raphe-nuclei-of-as-andasagu-rats.html. Accessed 16 June 2022.

Andén NE, Fuxe K, Ungerstedt U. Monoamine pathways to the cerebellum and cerebral cortex. Experientia. 1967;23:838–9. https://doi.org/10.1007/BF02146876.

Article  PubMed  Google Scholar 

Kish SJ, Shannak KS, Hornykiewicz O. Reduction of noradrenaline in cerebellum of patients with olivopontocerebellar atrophy. J Neurochem. 1984;42:1476–8. https://doi.org/10.1111/j.1471-4159.1984.tb02813.x.

Article  PubMed  CAS  Google Scholar 

Landis SC, Bloom FE. Ultrastructural identification of noradrenergic boutons in mutant and normal mouse cerebellar cortex. Brain Res. 1975;96:299–305. https://doi.org/10.1016/0006-8993(75)90738-6.

Article  PubMed  CAS  Google Scholar 

Landis SC, Shoemaker WJ, Schlumpf M, Bloom FE. Catecholamines in mutant mouse cerebellum: fluorescence microscopic and chemical studies. Brain Res. 1975;93:253–66. https://doi.org/10.1016/0006-8993(75)90349-2.

Article  PubMed  CAS  Google Scholar 

Ghetti B, Fuller RW, Sawyer BD, Hemrick-Luecke SK, Schmidt MJ. Purkinje cell loss and the noradrenergic system in the cerebellum of pcd mutant mice. Brain Res Bull. 1981;7:711–4. https://doi.org/10.1016/0361-9230(81)90123-4.

Article  PubMed  CAS  Google Scholar 

Roffler-Tarlov S, Landis SC, Zigmond MJ. Effects of Purkinje cell degeneration on the noradrenergic projection to mouse cerebellar cortex. Brain Res. 1984;298:303–11. https://doi.org/10.1016/0006-8993(84)91429-x.

Article  PubMed  CAS  Google Scholar 

Ohsugi K, Adachi K, Ando K. Serotonin metabolism in the CNS in cerebellar ataxic mice. Experientia. 1986;42:1245–7. https://doi.org/10.1007/BF01946406.

Article  PubMed  CAS  Google Scholar 

Triarhou LC, Ghetti B. Monoaminergic nerve terminals in the cerebellar cortex of Purkinje cell degeneration mutant mice: fine structural integrity and modification of cellular environs following loss of Purkinje and granule cells. Neuroscience. 1986;18:795–807. https://doi.org/10.1016/0306-4522(86)90100-4.

Article  PubMed  CAS  Google Scholar 

Ghetti B, Perry KW, Fuller RW. Serotonin concentration and turnover in cerebellum and other brain regions of pcd mutant mice. Brain Res. 1988;458:367–71. https://doi.org/10.1016/0006-8993(88)90480-5.

Article  PubMed  CAS  Google Scholar 

Triarhou LC, Ghetti B. Serotonin-immunoreactivity in the cerebellum of two neurological mutant mice and the corresponding wild-type genetic stocks. J Chem Neuroanat. 1991;4:421–8. https://doi.org/10.1016/0891-0618(91)90022-5.

Article  PubMed  CAS  Google Scholar 

Ghetti B, Triarhou LC, Fuller RW. Cerebellar monoamines in the “Purkinje cell degeneration” mutant mouse. In: Trouillas A, Fuxe K, editors. Serotonin, the cerebellum and ataxia. New York: Raven Press; 1993. p. 297–306.

Google Scholar 

Abbott LC, Sotelo C. Ultrastructural analysis of catecholaminergic innervation in weaver and normal mouse cerebellar cortices. J Comp Neurol. 2000;426:316–29. https://doi.org/10.1002/1096-9861(20001016)426:2%3c316::AID-CNE11%3e3.0.CO;2-8.

Article  PubMed  CAS  Google Scholar 

Giompres P, Delis F. Dopamine transporters in the cerebellum of mutant mice. Cerebellum. 2005;4:105–11. https://doi.org/10.1080/14734220510007851.

Article  PubMed  CAS  Google Scholar 

Tohyama M. Comparative anatomy of cerebellar catecholamine innervations from teleosts to mammals. J Hirnforsch. 1976;17:43–60.

PubMed  CAS  Google Scholar 

Nelson TE, King JS, Bishop GA. Distribution of tyrosine hydroxylase-immunoreactive afferents to the cerebellum differs between species. J Comp Neurol. 1997;379:443–54. https://doi.org/10.1002/(sici)1096-9861(19970317)379:3%3c443::aid-cne9%3e3.0.co;2-3.

Article  PubMed  CAS  Google Scholar 

Sotelo C, Beaudet A. Influence of experimentally induced agranularity on the synaptogenesis of serotonin nerve terminals in rat cerebellar cortex. Proc R Soc Lond B Biol Sci. 1979;206:133–8. https://doi.org/10.1098/rspb.1979.0096.

Article  PubMed  CAS  Google Scholar 

Yeh HH, Woodward DJ. Noradrenergic action in the developing rat cerebellum: interaction between norepinephrine and synaptically-evoked responses of immature Purkinje cells. Brain Res. 1983;313:207–18. https://doi.org/10.1016/0165-3806(83)90218-3.

Article  PubMed  CAS  Google Scholar 

Dopico AM, Zieher LM. Neurochemical characterization of the alterations in the noradrenergic afferents to the cerebellum of adult rats exposed to X-irradiation at birth. J Neurochem. 1993;61:481–9. https://doi.org/10.1111/j.1471-4159.1993.tb02149.x.

Article  PubMed  CAS  Google Scholar 

Kostrzewa RM, Harston CT, Fukushima H, Brus R. Noradrenergic fiber sprouting in the cerebellum. Brain Res Bull. 1982;9:509–17. https://doi.org/10.1016/0361-9230(82)90159-9.

Article  PubMed  CAS  Google Scholar 

Robain O, Lanfumey L, Adrien J, Farkas E. Developmental changes in the cerebellar cortex after locus coeruleus lesion with 6-hydroxydopamine in the rat. Exp Neurol. 1985;88:150–64. https://doi.org/10.1016/0014-4886(85)90120-7.

Article  PubMed  CAS  Google Scholar 

Sievers J, Mangold U, Berry M. 6-OHDA-induced ectopia of external granule cells in the subarachnoid space covering the cerebellum. III. Morphology and synaptic organization of ectopic cerebellar neurons: a scanning and transmission electron microscopic study. J Comp Neurol. 1985;232:319–30. https://doi.org/10.1002/cne.902320305.

Article  PubMed  CAS  Google Scholar 

Triarhou LC, Low WC, Ghetti B. Serotonin fiber innervation of cerebellar cell suspensions intraparenchymally grafted to the cerebellum of pcd mutant mice. Neurochem Res. 1992;17:475–82. https://doi.org/10.1007/BF00969895.

Article  PubMed  CAS  Google Scholar 

Hökfelt T, Fuxe K. Cerebellar monoamine nerve terminals, a new type of afferent fibers to the cortex cerebelli. Exp Brain Res. 1969;9:63–72. https://doi.org/10.1007/BF00235452.

Article  PubMed  Google Scholar 

Steindler DA. Locus coeruleus neurons have axons that branch to the forebrain and cerebellum. Brain Res. 1981;223:367–73. https://doi.org/10.1016/0006-8993(81)91149-5.

Article  PubMed  CAS  Google Scholar 

Olson L, Fuxe K. On the projections from the locus coeruleus noradrenaline neurons: the cerebellar innervation. Brain Res. 1971;28:165–71. https://doi.org/10.1016/0006-8993(71)90533-6.

Article  PubMed  CAS  Google Scholar 

Siggins GR, Hoffer BJ, Oliver AP, Bloom FE. Activation of a central noradrenergic projection to cerebellum. Nature. 1971;233:481–3. https://doi.org/10.1038/233481a0.

Article  PubMed  CAS  Google Scholar 

Hoffer BJ, Siggins GR, Oliver AP, Bloom FE. Activation of the pathway from locus coeruleus to rat cerebellar Purkinje neurons: pharmacological evidence of noradrenergic central inhibition. J Pharmacol Exp Ther. 1973;184:553–69.

PubMed  CAS  Google Scholar 

Kimoto Y, Satoh K, Sakumoto T, Tohyama M, Shimizu N. Afferent fiber connections from the lower brain stem to the rat cerebellum by the horseradish peroxidase method combined with MAO staining, with special reference to noradrenergic neurons. J Hirnforsch. 1978;19:85–100.

PubMed  CAS  Google Scholar 

Pasquier DA, Gold MA, Jacobowitz DM. Noradrenergic perikarya (A5–A7, subcoeruleus) projections to the rat cerebellum. Brain Res. 1980;196:270–5. https://doi.org/10.1016/0006-8993(80)90737-4.

Article  PubMed 

留言 (0)

沒有登入
gif