Bioavailability enhancement of vitamin E TPGS liposomes of nintedanib esylate: formulation optimization, cytotoxicity and pharmacokinetic studies

Nikezić AVV, Bondžić AM, Vasić VM. Drug delivery systems based on nanoparticles and related nanostructures. Eur J Pharm Sci. 2020;151:105412. Available from: https://doi.org/10.1016/j.ejps.2020.105412.

Hilberg F, Roth GJ, Krssak M, Kautschitsch S, Sommergruber W, Tontsch-Grunt U, et al. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. J Cancer Research. 2008;68(12):4774–82. Available from: https://doi.org/10.1158/0008-5472.CAN-07-6307.

Wind S, Schmid U, Freiwald M, Marzin K, Lotz R, Ebner T, et al. Clinical pharmacokinetics and pharmacodynamics of nintedanib. J Clinical Pharmacokinetics. 2019;58(9):1131–47. Available from: https://doi.org/10.1007/s40262-019-00766-0.

Tepede A, Yogaratnam D. Nintedanib for idiopathic pulmonary fibrosis. J Pharm Pract. 2019;32(2):199–206. Available from: https://doi.org/10.1177/0897190017735242.

Zhu Y, Fu Y, Zhang A, Wang X, Zhao Z, Zhang Y, et al. Rod-shaped nintedanib nanocrystals improved oral bioavailability through multiple intestinal absorption pathways. Eur J Pharm Sci. 2021:106047. Available from: https://doi.org/10.1016/j.ejps.2021.106047.

Jose G, Lu Y-J, Hung J-T, Yu AL, Chen J-P. Co-delivery of CPT-11 and panobinostat with Anti-GD2 antibody conjugated immunoliposomes for targeted combination chemotherapy. Cancers (Basel). 2020;12(11):3211. Available from: https://doi.org/10.3390/cancers12113211.

Fu Y, Saraswat A, Wei Z, Agrawal MY, Dukhande VV, Reznik SE, et al. Development of dual ARV-825 and nintedanib-loaded PEGylated nano-liposomes for synergistic efficacy in vemurafnib-resistant melanoma. Pharmaceutics. 2021;13(7):1005. Available from: https://doi.org/10.3390/pharmaceutics13071005.

Velagacherla V, Suresh A, Mehta CH, Nayak UY. Advances and challenges in nintedanib drug delivery. Expert Opin Drug Deliv. 2021;18(11):1687–706. Available from: https://doi.org/10.1080/17425247.2021.1985460.

Li N, Mai Y, Liu Q, Gou G, Yang J. Docetaxel-loaded D-α-tocopheryl polyethylene glycol-1000 succinate liposomes improve lung cancer chemotherapy and reverse multidrug resistance. Drug Deliv Transl Res: J Lab Clin Med. 2021;11(1):131–41. Available from: https://doi.org/10.1007/s13346-020-00720-9.

Jain S, Kumar D, Swarnakar NK, Thanki K. Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel. Biomaterials. 2012;33(28):6758–68. Available from: https://doi.org/10.1016/j.biomaterials.2012.05.026.

Jain S, Deore SV, Ghadi R, Chaudhari D, Kuche K, Katiyar SS. Tumor microenvironment responsive VEGF-antibody functionalized pH sensitive liposomes of docetaxel for augmented breast cancer therapy. Mater Sci Eng C. 2021;121:111832. Available from: https://doi.org/10.1016/j.msec.2020.111832.

Tsumoto K, Matsuo H, Tomita M, Yoshimura T. Efficient formation of giant liposomes through the gentle hydration of phosphatidylcholine films doped with sugar. Colloids Surf. B: Biointerfaces. 2009;68(1):98–105. Available from: https://doi.org/10.1016/j.colsurfb.2008.09.023.

Pellequer Y, Ollivon M, Barratt G. Formulation of liposomes associated with recombinant interleukin-2: effect on interleukin-2 activity. Biomed Pharmacother. 2004;58(3):162–7. Available from: https://doi.org/10.1016/j.biopha.2003.12.008.

Kala SG, Chinni S. Solid state characterization of olmesartan medoximil solid dispersion and in-silico formulation design using quality by design techniques engendered by definitive screening design. J Young Pharm. 2021;13(1). Available from: https://doi.org/10.5530/jyp.2021.13.11.

Jones B, Nachtsheim CJ. A class of three-level designs for definitive screening in the presence of second-order effects. J Food Qual Technol. 2011;43(1):1–15. Available from: https://doi.org/10.1080/00224065.2011.11917841.

Lopez-Pinto J, Gonzalez-Rodriguez M, Rabasco A. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. Int J Pharm. 2005;298(1):1–12. Available from: https://doi.org/10.1016/j.ijpharm.2005.02.021.

Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58(15):1688–713. Available from: https://doi.org/10.1016/j.addr.2006.09.017.

Bapat P, Ghadi R, Chaudhari D, Katiyar SS, Jain S. Tocophersolan stabilized lipid nanocapsules with high drug loading to improve the permeability and oral bioavailability of curcumin. Int J Pharm. 2019;560:219–27. Available from: https://doi.org/10.1016/j.ijpharm.2019.02.013.

Kalaria D, Sharma G, Beniwal V, Kumar MR. Design of biodegradable nanoparticles for oral delivery of doxorubicin: in vivo pharmacokinetics and toxicity studies in rats. Pharm Res. 2009;26(3):492–501. Available from: https://doi.org/10.1007/s11095-008-9763-4.

Upadhyay KK, Bhatt AN, Mishra AK, Dwarakanath BS, Jain S, Schatz C, et al. The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly (γ-benzyl l-glutamate)-b-hyaluronan polymersomes. Biomaterials. 2010;31(10):2882–92. Available from: https://doi.org/10.1016/j.biomaterials.2009.12.043.

Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. The AAPS Journal. 2010;12(3):263–71. Available from: https://doi.org/10.1208/s12248-010-9185-1.

Vertzoni M, Fotaki N, Nicolaides E, Reppas C, Kostewicz E, Stippler E, et al. Dissolution media simulating the intralumenal composition of the small intestine: physiological issues and practical aspects. Journal of Pharmacy and Pharmacology & Therapeutics Part B: General and Systematic Pharmacology. 2004;56(4):453–62. Available from: https://doi.org/10.1211/0022357022935.

Crosasso P, Ceruti M, Brusa P, Arpicco S, Dosio F, Cattel L. Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J Control Release. 2000;63(1–2):19–30. Available from: https://doi.org/10.1016/S0168-3659(99)00166-2.

Zimmermann E, Müller RH. Electrolyte-and pH-stabilities of aqueous solid lipid nanoparticle (SLN™) dispersions in artificial gastrointestinal media. Euro J Pharm Biopharm Drug Disposition. 2001;52(2):203–10. Available from: https://doi.org/10.1016/S0939-6411(01)00167-9.

Yang T, Cui F-D, Choi M-K, Cho J-W, Chung S-J, Shim C-K, et al. Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm. 2007;338(1–2):317–26. Available from: https://doi.org/10.1016/j.ijpharm.2007.02.011.

Jain AK, Swarnakar NK, Godugu C, Singh RP, Jain S. The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen. Biomaterials. 2011;32(2):503–15. Available from: https://doi.org/10.1016/j.biomaterials.2010.09.037.

Choi B-C, Choi J-S, Han H-K. Altered pharmacokinetics of paclitaxel by the concomitant use of morin in rats. Int J Pharm. 2006;323(1–2):81–5. Available from: https://doi.org/10.1016/j.ijpharm.2006.05.046.

Waghmare SA, Sumithra M. QbD based development and validation of RP-HPLC method for nintedanib esylate: application to bioanalytical and stability study in plasma. Anal Chem Lett. 2021;11(3):392–408. Available from: https://doi.org/10.1080/22297928.2021.1930581.

Pasquini B, Orlandini S, Furlanetto S, Gotti R, Del Bubba M, Boscaro F, et al. Quality by Design as a risk-based strategy in pharmaceutical analysis: development of a liquid chromatography-tandem mass spectrometry method for the determination of nintedanib and its impurities. J Chromatogr A. 2020;1611:460615. Available from: https://doi.org/10.1016/j.chroma.2019.460615.

Zhang Y, Huo M, Zhou J, Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed. 2010;99(3):306–14. Available from: https://doi.org/10.1016/j.cmpb.2010.01.007.

Li J, Cheng X, Chen Y, He W, Ni L, Xiong P, et al. Vitamin E TPGS modified liposomes enhance cellular uptake and targeted delivery of luteolin: An in vivo/in vitro evaluation. Int J Pharm. 2016;512(1):262–72. Available from: https://doi.org/10.1016/j.ijpharm.2016.08.037.

Yaghoobian M, Haeri A, Bolourchian N, Shahhosseni S, Dadashzadeh S. The impact of surfactant composition and surface charge of niosomes on the oral absorption of repaglinide as a BCS II model drug. Int J Nanomedicine. 2020;15:8767. Available from: https://doi.org/10.2147/IJN.S261932.

Jash A, Ubeyitogullari A, Rizvi SS. Liposomes for oral delivery of protein and peptide-based therapeutics: challenges, formulation strategies, and advances. J Mater Chem B. 2021;9(24):4773–92. Available from: https://doi.org/10.1039/D1TB00126D.

Nguyen T-T-L, Duong V-A, Maeng H-J. Pharmaceutical formulations with P-glycoprotein inhibitory effect as promising approaches for enhancing oral drug absorption and bioavailability. Pharmaceutics. 2021;13(7):1103. Available from: https://doi.org/10.3390/pharmaceutics13071103.

Pandya P, Giram P, Bhole RP, Chang H-I, Raut SY. Nanocarriers based oral lymphatic drug targeting: strategic bioavailability enhancement approaches. J Drug Deliv Sci Technol. 2021;64:102585. Available from: https://doi.org/10.1016/j.jddst.2021.102585.

留言 (0)

沒有登入
gif