Role of alarmins in poststroke inflammation and neuronal repair

Kawai T, Akira S (2007) TLR signaling. Semin Immunol 19(1):24–32. https://doi.org/10.1016/j.smim.2006.12.004

CAS  Article  PubMed  Google Scholar 

World Health Organization (2020) The top 10 cause of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

Dreier JP, Reiffurth C (2015) The stroke-migraine depolarization continuum. Neuron 86(4):902–922. https://doi.org/10.1016/j.neuron.2015.04.004

CAS  Article  PubMed  Google Scholar 

Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188. https://doi.org/10.1016/j.pneurobio.2013.11.006

CAS  Article  PubMed  Google Scholar 

Yang JL, Mukda S, Chen SD (2018) Diverse roles of mitochondria in ischemic stroke. Redox Biol 16:263–275. https://doi.org/10.1016/j.redox.2018.03.002

CAS  Article  PubMed  PubMed Central  Google Scholar 

Neumann J et al (2015) Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke. Acta Neuropathol 129(2):259–277. https://doi.org/10.1007/s00401-014-1355-2

CAS  Article  PubMed  Google Scholar 

Oppenheim JJ, Yang D (2005) Alarmins: chemotactic activators of immune responses. Curr Opin Immunol 17(4):359–365. https://doi.org/10.1016/j.coi.2005.06.002

CAS  Article  PubMed  Google Scholar 

Harris HE, Raucci A (2006) Alarmin(g) news about danger: workshop on innate danger signals and HMGB1. EMBO Rep 7(8):774–778. https://doi.org/10.1038/sj.embor.7400759

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yang D, Han Z, Oppenheim JJ (2017) Alarmins and immunity. Immunol Rev 280(1):41–56. https://doi.org/10.1111/imr.12577

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kim JB et al (2006) HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci 26(24):6413–6421. https://doi.org/10.1523/JNEUROSCI.3815-05.2006

CAS  Article  PubMed  PubMed Central  Google Scholar 

Qiu J, Nishimura M, Wang Y, Sims JR, Qiu S, Savitz SI, Salomone S, Moskowitz MA (2008) Early release of HMGB-1 from neurons after the onset of brain ischemia. J Cereb Blood Flow Metab 28(5):927–938. https://doi.org/10.1038/sj.jcbfm.9600582

CAS  Article  PubMed  Google Scholar 

Zhang J et al (2011) Anti-high mobility group box-1 monoclonal antibody protects the blood-brain barrier from ischemia-induced disruption in rats. Stroke 42(5):1420–1428. https://doi.org/10.1161/STROKEAHA

CAS  Article  PubMed  Google Scholar 

Yang QW et al (2011) HMBG1 mediates ischemia-reperfusion injury by TRIF-adaptor independent Toll-like receptor 4 signaling. J Cereb Blood Flow Metab 31(2):593–605. https://doi.org/10.1038/jcbfm.2010.129

CAS  Article  PubMed  Google Scholar 

Yanai et al (2009) HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462(7269):99–103. https://doi.org/10.1038/nature08512

CAS  Article  PubMed  Google Scholar 

Xiong XX, Gu LJ, Shen J, Kang XH, Zheng YY, Yue SB, Zhu SM (2014) Probenecid protects against transient focal cerebral ischemic injury by inhibiting HMGB1 release and attenuating AQP4 expression in mice. Neurochem Res 39(1):216–224. https://doi.org/10.1007/s11064-013-1212-z

CAS  Article  PubMed  Google Scholar 

Goldstein RS et al (2006) Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia. Shock 25(6):571–574. https://doi.org/10.1097/01.shk.0000209540.99176.72

CAS  Article  PubMed  Google Scholar 

Huang JM, Hu J, Ning C, Hu ML (2013) Relationship between plasma high-mobility group box-1 levels and clinical outcomes of ischemic stroke. J Crit Care 28(5):792–797. https://doi.org/10.1016/j.jcrc.2012.10.003

CAS  Article  PubMed  Google Scholar 

Schulze J, Zierath D, Tanzi P, Cain K, Shibata D, Dressel A, Becker K (2013) Severe stroke induces long-lasting alterations of high-mobility group box 1. Stroke 44(1):246–248. https://doi.org/10.1161/STROKEAHA.112.676072

CAS  Article  PubMed  Google Scholar 

Sapojnikova N, Kartvelishvili T, Asatiani N, Zinkevich V, Kalandadze I, Gugutsidze D, Shakarishvili R (1842) Tsiskaridze A (2014) Correlation between MMP-9 and extracellular cytokine HMGB1 in prediction of human ischemic stroke outcome. Biochim Biophys Acta 9:1379–1384. https://doi.org/10.1016/j.bbadis.2014.04.031

CAS  Article  Google Scholar 

Wang J, Jiang Y, Zeng D, Zhou W, Hong X (2020) Prognostic value of plasma HMGB1 in ischemic stroke patients with cerebral ischemia-reperfusion injury after intravenous thrombolysis. J Stroke Cerebrovasc Dis 29(9):105055. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105055

Article  PubMed  Google Scholar 

Rashidian J et al (2009) Essential role of cytoplasmic cdk5 and Prx2 in multiple ischemic injury models, in vivo. J Neurosci 29(40):12497–12505. https://doi.org/10.1523/JNEUROSCI.3892-09.2009

CAS  Article  PubMed  PubMed Central  Google Scholar 

Shichita T et al (2012) Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat Med 18(6):911–917. https://doi.org/10.1038/nm.2749

CAS  Article  PubMed  Google Scholar 

Kuang X (2014) Ligustilide ameliorates neuroinflammation and brain injury in focal cerebral ischemia/reperfusion rats: involvement of inhibition of TLR4/peroxiredoxin 6 signaling. Free Radic Biol Med 71:165–175. https://doi.org/10.1016/j.freeradbiomed.2014.03.028

CAS  Article  PubMed  Google Scholar 

Nakamura K et al (2021) Extracellular DJ-1 induces sterile inflammation in the ischemic brain. PLoS Biol 19(5):e3000939. https://doi.org/10.1371/journal.pbio.3000939

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A (2007) HumanTH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 13(10):1173–1175. https://doi.org/10.1038/nm1651

CAS  Article  PubMed  PubMed Central  Google Scholar 

Richard S, Lapierre V, Girerd N, Bonnerot M, Burkhard PR, Lagerstedt L, Bracard S, Debouverie M, Turck N, Sanchez JC (2016) Diagnostic performance of peroxiredoxin 1 to determine time- of-onset of acute cerebral infarction. Sci Rep 6:38300. https://doi.org/10.1038/srep38300

CAS  Article  PubMed  PubMed Central  Google Scholar 

Tsai SY, Segovia JA, Chang TH, Morris IR, Berton MT, Tessier PA, Tardif MR, Cesaro A, Bose S (2014) DAMP molecule S100A9 acts as a molecular pattern to enhance inflammation dur- ing influenza a virus infection: role of DDX21-TRIF-TLR4- MyD88 pathway. PLoS Pathog 10(1):e1003848. https://doi.org/10.1371/journal.ppat.1003848

CAS  Article  PubMed  PubMed Central  Google Scholar 

Loser K et al (2010) The Toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the develop- ment of autoreactive CD8+ T cells. Nat Med 16(6):713–717. https://doi.org/10.1038/nm.2150

CAS  Article  PubMed  Google Scholar 

Vogl T et al (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13(9):1042–1049. https://doi.org/10.1038/nm1638

CAS  Article  PubMed  Google Scholar 

Qiang X et al (2013) Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nat Med 19(11):1489–1495. https://doi.org/10.1038/nm.3368

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yang Y, Liu B, Dai J, Srivastava PK, Zammit DJ, Lefrançois L, Li Z (2007) Heat shock protein gp96 is a master chaperone for Toll-like receptors and is important in the innate function of macrophages. Immunity 26(2):215–226. https://doi.org/10.1016/j.immuni.2006.12.005

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ekaney ML et al (2014) Impact of plasma histones in human sepsis and their contribution to cellular injury and inflammation. Crit Care 18(5):543. https://doi.org/10.1186/s13054-014-0543-8

Article  PubMed  PubMed Central  Google Scholar 

Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384. https://doi.org/10.1038/ni.1863

CAS  Article  PubMed  Google Scholar 

Zhang Q, RaoofM CY, Sumi Y, Sursal T, JungerW BK, Itagaki K, Hauser CJ (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464(7285):104–107. https://doi.org/10.1038/nature08780

CAS  Article  PubMed  PubMed Central  Google Scholar 

Oka T et al (2012) Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485(7397):251–255. https://doi.org/10.1038/nature10992

CAS  Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif