Novel cyanobacteriochrome photoreceptor with the second Cys residue showing atypical orange/blue reversible photoconversion

Fushimi, K., & Narikawa, R. (2019). Cyanobacteriochromes: Photoreceptors covering the entire UV-to-visible spectrum. Current Opinion in Structural Biology, 57, 39–46. https://doi.org/10.1007/s43630-022-00198-z

CAS  Article  PubMed  Google Scholar 

Rockwell, N. C., & Lagarias, J. C. (2010). A brief history of phytochromes. ChemPhysChem, 11(6), 1172–1180. https://doi.org/10.1002/cphc.200900894

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fushimi, K., Enomoto, G., Ikeuchi, M., & Narikawa, R. (2017). Distinctive properties of dark reversion kinetics between two red/green-type cyanobacteriochromes and their application in the photoregulation of cAMP synthesis. Photochemistry and Photobiology, 93(3), 681–691. https://doi.org/10.1111/php.12732

CAS  Article  PubMed  Google Scholar 

Oliinyk, O. S., Chernov, K. G., & Verkhusha, V. V. (2017). Bacterial phytochromes, cyanobacteriochromes and allophycocyanins as a source of near-infrared fluorescent probes. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms18081691

Article  PubMed  PubMed Central  Google Scholar 

Chee, R. K. W., Li, Y., Zhang, W., Campbell, R. E., & Zemp, R. J. (2018). In vivo photoacoustic difference-spectra imaging of bacteria using photoswitchable chromoproteins. Journal of Biomedical Optics, 23(10), 1–11. https://doi.org/10.1117/1.JBO.23.10.106006

Article  PubMed  Google Scholar 

Blain-Hartung, M., Rockwell, N. C., Moreno, M. V., Martin, S. S., Gan, F., Bryant, D. A., & Lagarias, J. C. (2018). Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells. The Journal of Biological Chemistry, 293(22), 8473–8483. https://doi.org/10.1074/jbc.RA118.002258

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fushimi, K., Miyazaki, T., Kuwasaki, Y., Nakajima, T., Yamamoto, T., Suzuki, K., Ueda, Y., Miyake, K., Takeda, Y., Choi, J. H., Kawagishi, H., Park, E. Y., Ikeuchi, M., Sato, M., & Narikawa, R. (2019). Rational conversion of chromophore selectivity of cyanobacteriochromes to accept mammalian intrinsic biliverdin. Proceedings of the National Academy of Sciences of the United States of America, 116(17), 8301–8309. https://doi.org/10.1073/pnas.1818836116

CAS  Article  PubMed  PubMed Central  Google Scholar 

Oliinyk, O. S., Shemetov, A. A., Pletnev, S., Shcherbakova, D. M., & Verkhusha, V. V. (2019). Smallest near-infrared fluorescent protein evolved from cyanobacteriochrome as versatile tag for spectral multiplexing. Nature Communications, 10(1), 279. https://doi.org/10.1038/s41467-018-08050-8

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fushimi, K., Hasegawa, M., Ito, T., Rockwell, N. C., Enomoto, G., Ni-Ni, W., Lagarias, J. C., Ikeuchi, M., & Narikawa, R. (2020). Evolution-inspired design of multicolored photoswitches from a single cyanobacteriochrome scaffold. Proceedings of the National Academy of Sciences of the United States of America, 117(27), 15573–15580. https://doi.org/10.1073/pnas.2004273117

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fushimi, K., & Narikawa, R. (2021). Phytochromes and cyanobacteriochromes: Photoreceptor molecules incorporating a linear tetrapyrrole chromophore. Advances in Experimental Medicine and Biology, 1293, 167–187. https://doi.org/10.1007/978-981-15-8763-4_10

CAS  Article  PubMed  Google Scholar 

Bandara, S., Rockwell, N. C., Zeng, X., Ren, Z., Wang, C., Shin, H., Martin, S. S., Moreno, M. V., Lagarias, J. C., & Yang, X. (2021). Crystal structure of a far-red-sensing cyanobacteriochrome reveals an atypical bilin conformation and spectral tuning mechanism. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.2025094118

Article  PubMed  PubMed Central  Google Scholar 

Fushimi, K., Ikeuchi, M., & Narikawa, R. (2017). The expanded red/green cyanobacteriochrome lineage: An evolutionary hot spot. Photochemistry and Photobiology, 93(3), 903–906. https://doi.org/10.1111/php.12764

CAS  Article  PubMed  Google Scholar 

Yoshihara, S., Katayama, M., Geng, X., & Ikeuchi, M. (2004). Cyanobacterial phytochrome-like PixJ1 holoprotein shows novel reversible photoconversion between blue- and green-absorbing forms. Plant and Cell Physiology, 45(12), 1729–1737. https://doi.org/10.1093/pcp/pch214

CAS  Article  PubMed  Google Scholar 

Ishizuka, T., Shimada, T., Okajima, K., Yoshihara, S., Ochiai, Y., Katayama, M., & Ikeuchi, M. (2006). Characterization of cyanobacteriochrome TePixJ from a thermophilic cyanobacterium Thermosynechococcus elongatus strain BP-1. Plant and Cell Physiology, 47(9), 1251–1261. https://doi.org/10.1093/pcp/pcj095

CAS  Article  PubMed  Google Scholar 

Rockwell, N. C., Njuguna, S. L., Roberts, L., Castillo, E., Parson, V. L., Dwojak, S., Lagarias, J. C., & Spiller, S. C. (2008). A second conserved GAF domain cysteine is required for the blue/green photoreversibility of cyanobacteriochrome Tlr0924 from Thermosynechococcus elongatus. Biochemistry, 47(27), 7304–7316. https://doi.org/10.1021/bi800088t

CAS  Article  PubMed  Google Scholar 

Narikawa, R., Suzuki, F., Yoshihara, S., Higashi, S.-I., Watanabe, M., & Ikeuchi, M. (2011). Novel photosensory two-component system (PixA-NixB-NixC) involved in the regulation of positive and negative phototaxis of cyanobacterium Synechocystis sp. PCC 6803. Plant and Cell Physiology, 52(12), 2214–2224. https://doi.org/10.1093/pcp/pcr155

CAS  Article  PubMed  Google Scholar 

Rockwell, N. C., Martin, S. S., Gulevich, A. G., & Lagarias, J. C. (2012). Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily. Biochemistry, 51(7), 1449–1463. https://doi.org/10.1021/bi201783j

CAS  Article  PubMed  Google Scholar 

Rockwell, N. C., Martin, S. S., & Lagarias, J. C. (2012). Mechanistic insight into the photosensory versatility of DXCF cyanobacteriochromes. Biochemistry, 51(17), 3576–3585. https://doi.org/10.1021/bi300171s

CAS  Article  PubMed  Google Scholar 

Enomoto, G., Hirose, Y., Narikawa, R., & Ikeuchi, M. (2012). Thiol-based photocycle of the blue and teal light-sensing cyanobacteriochrome Tlr 1999. Biochemistry, 51(14), 3050–3058. https://doi.org/10.1021/bi300020u

CAS  Article  PubMed  Google Scholar 

Ma, Q., Hua, H.-H., Chen, Y., Liu, B.-B., Krämer, A. L., Scheer, H., Zhao, K.-H., & Zhou, M. (2012). A rising tide of blue-absorbing biliprotein photoreceptors: characterization of seven such bilin-binding GAF domains in Nostoc sp PCC7120. The FEBS Journal, 279(21), 4095–4108. https://doi.org/10.1111/febs.12003

CAS  Article  PubMed  Google Scholar 

Cho, S. M., Jeoung, S. C., Song, J.-Y., Kupriyanova, E. V., Pronina, N. A., Lee, B.-W., Jo, S. W., Park, B. S., Choi, S. B., Song, J. J., & Park, Y.-I. (2015). Genomic survey and biochemical analysis of recombinant candidate cyanobacteriochromes reveals enrichment for near UV/violet sensors in the halotolerant and alkaliphilic cyanobacterium Microcoleus IPPAS B353. The Journal of Biological Chemistry, 290(47), 28502–28514. https://doi.org/10.1074/jbc.M115.669150

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wiltbank, L. B., & Kehoe, D. M. (2016). Two cyanobacterial photoreceptors regulate photosynthetic light harvesting by sensing teal, green, yellow, and red light. MBio, 7(1), e02130-e2215. https://doi.org/10.1128/mBio.02130-15

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hasegawa, M., Fushimi, K., Miyake, K., Nakajima, T., Oikawa, Y., Enomoto, G., Sato, M., Ikeuchi, M., & Narikawa, R. (2018). Molecular characterization of DXCF cyanobacteriochromes from the cyanobacterium Acaryochloris marina identifies a blue-light power sensor. The Journal of Biological Chemistry, 293(5), 1713–1727. https://doi.org/10.1074/jbc.M117.816553

CAS  Article  PubMed  Google Scholar 

Ishizuka, T., Narikawa, R., Kohchi, T., Katayama, M., & Ikeuchi, M. (2007). Cyanobacteriochrome TePixJ of Thermosynechococcus elongatus harbors phycoviolobilin as a chromophore. Plant and Cell Physiology, 48(9), 1385–1390. https://doi.org/10.1093/pcp/pcm106

CAS  Article  PubMed  Google Scholar 

Ishizuka, T., Kamiya, A., Suzuki, H., Narikawa, R., Noguchi, T., Kohchi, T., Inomata, K., & Ikeuchi, M. (2011). The cyanobacteriochrome, TePixJ, isomerizes its own chromophore by converting phycocyanobilin to phycoviolobilin. Biochemistry, 50(6), 953–961. https://doi.org/10.1021/bi101626t

CAS  Article  PubMed  Google Scholar 

Narikawa, R., Ishizuka, T., Muraki, N., Shiba, T., Kurisu, G., & Ikeuchi, M. (2013). Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism. Proceedings of the National Academy of Sciences of the United States of America, 110(3), 918–923. https://doi.org/10.1073/pnas.1212098110

Article  PubMed  Google Scholar 

Burgie, E. S., Walker, J. M., Phillips, G. N., Jr., & Vierstra, R. D. (2013). A photo-labile thioether linkage to phycoviolobilin provides the foundation for the blue/green photocycles in DXCF-cyanobacteriochromes. Structure, 21(1), 88–97. https://doi.org/10.1016/j.str.2012.11.001

CAS  Article  PubMed  Google Scholar 

Rockwell, N. C., Martin, S. S., & Lagarias, J. C. (2015). Identification of DXCF cyanobacteriochrome lineages with predictable photocycles. Photochemical and Photobiological Sciences, 14(5), 929–941. https://doi.org/10.1039/c4pp00486h

CAS  Article  PubMed  Google Scholar 

Fushimi, K., & Narikawa, R. (2021). Unusual ring D fixation by three crucial residues promotes phycoviolobilin formation in the DXCF-type cyanobacteriochrome without the second Cys. Biochemical Journal, 478(5), 1043–1059. https://doi.org/10.1042/BCJ20210013

CAS  Article  PubMed  Google Scholar 

Fushimi, K., Rockwell, N. C., Enomoto, G., Ni-Ni, W., Martin, S. S., Gan, F., Bryant, D. A., Ikeuchi, M., Lagarias, J. C., & Narikawa, R. (2016). Cyanobacteriochrome photoreceptors lacking the canonical Cys residue. Biochemistry, 55(50), 6981–6995. https://doi.org/10.1021/acs.biochem.6b00940

CAS  Article  PubMed  Google Scholar 

Fushimi, K., Nakajima, T., Aono, Y., Yamamoto, T., Ni-Ni-Win, I., & M., Sato, M., & Narikawa, R. (2016). Photoconversion and fluorescence properties of a red/green-type cyanobacteriochrome AM1_C0023g2 that binds not only phycocyanobilin but also biliverdin. Frontiers in Microbiology, 7, 588. https://doi.org/10.3389/fmicb.2016.00588

Article  PubMed  PubMed Central  Google Scholar 

Narikawa, R., Kohchi, T., & Ikeuchi, M. (2008). Characterization of the photoactive GAF domain of the CikA homolog (SyCikA, Slr 1969) of the cyanobacterium Synechocystis sp. PCC 6803. Photochemical and Photobiological Sciences, 7(10), 1253–1259. https://doi.org/10.1039/b811214b

CAS  Article 

留言 (0)

沒有登入
gif