Effects of Gabapentin and Pregabalin on Calcium Homeostasis: Implications for Physical Rehabilitation of Musculoskeletal Tissues

Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32:1–32. https://doi.org/10.1146/annurev.neuro.051508.135531.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li CY, Zhang XL, Matthews EA, Li KW, Kurwa A, Boroujerdi A, Gross J, Gold MS, Dickenson AH, Feng G, Luo DZ. Calcium channel alpha2delta1 subunit mediates spinal hyperexcitability in pain modulation. Pain. 2006;125(1-2):20–34. https://doi.org/10.1016/j.pain.2006.04.022.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Luo ZD, Chaplan SR, Higuera ES, Sorkin LS, Stauderman KA, Williams ME, et al. Upregulation of dorsal root ganglion α2δ calcium channel subunit and its correlation with allodynia in spinal nerve-injured rats. 2001;21(6):1868-75. https://doi.org/10.1523/JNEUROSCI.21-06-01868.2001.

Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, Freeman R, Truini A, Attal N, Finnerup NB, Eccleston C, Kalso E, Bennett DL, Dworkin RH, Raja SN. Neuropathic pain. Nat Rev Dis Primers. 2017;3(1):17002. https://doi.org/10.1038/nrdp.2017.2.

Article  PubMed  PubMed Central  Google Scholar 

Goodman CW, Brett AS. Gabapentin and pregabalin for pain - is increased prescribing a cause for concern? N Engl J Med. 2017;377(5):411–4. https://doi.org/10.1056/NEJMp1704633.

Article  PubMed  Google Scholar 

Urits I, Gress K, Charipova K, Zamarripa AM, Patel PM, Lassiter G, et al. Pharmacologic options for the treatment of chronic migraine pain. 2020. https://doi.org/10.1016/j.bpa.2020.08.002.

Urquhart L. Market watch: Top drugs and companies by sales in 2017. Nat Rev Drug Discov. 2018;17(4):232. https://doi.org/10.1038/nrd.2018.42.

Article  PubMed  CAS  Google Scholar 

Philippidis AJGE, News B. Top 15 best-selling drugs of 2018: sales for most treatments grow year-over-year despite concerns over rising prices. 2019;39(4):16-7. https://doi.org/10.1089/genedge.1.1.05.

GlobalData. PMLive Top 50 pharmaceutical products by global sales. https://www.pmlive.com/top_pharma_list/Top_50_pharmaceutical_products (2017). Accessed 10/14/21.

Press Release. At a 1.8% CAGR, Gabapentin Market 2021 is expected to register a significant growth by increasing demand from end-user industries including Epilepsy and Neuropathic Pain. https://www.marketwatch.com/press-release/at-a-18-cagr-gabapentin-market-2021-is-expected-to-register-a-significant-growth-by-increasing-demand-from-end-user-industries-including-epilepsy-and-neuropathic-pain-2021-07-25 (2021). Accessed 10/14/21.

Goa KL, Sorkin EM. Gabapentin. A review of its pharmacological properties and clinical potential in epilepsy. Drugs. 1993;46(3):409–27. https://doi.org/10.2165/00003495-199346030-00007.

Article  PubMed  CAS  Google Scholar 

Li Z, Taylor CP, Weber M, Piechan J, Prior F, Bian F, et al. Pregabalin is a potent and selective ligand for α2δ-1 and α2δ-2 calcium channel subunits. 2011;667(1-3):80-90. https://doi.org/10.1016/j.ejphar.2011.05.054.

Treiman DM. GABAergic mechanisms in epilepsy. Epilepsia. 2001;42(Suppl 3):8–12. https://doi.org/10.1046/j.1528-1157.2001.042suppl.3008.x.

Article  PubMed  Google Scholar 

Jensen AA, Mosbacher J, Elg S, Lingenhoehl K, Lohmann T, Johansen TN, Abrahamsen B, Mattsson JP, Lehmann A, Bettler B, Bräuner-Osborne H. The anticonvulsant gabapentin (neurontin) does not act through gamma-aminobutyric acid-B receptors. Mol Pharmacol. 2002;61(6):1377–84. https://doi.org/10.1124/mol.61.6.1377.

Article  PubMed  CAS  Google Scholar 

Lanneau C, Green A, Hirst WD, Wise A, Brown JT, Donnier E, J. Charles K, Wood M, Davies CH, Pangalos MN. Gabapentin is not a GABAB receptor agonist. Neuropharmacology. 2001;41(8):965–75. https://doi.org/10.1016/s0028-3908(01)00140-x.

Article  PubMed  CAS  Google Scholar 

Gee NS, Brown JP, Dissanayake VU, Offord J, Thurlow R, Woodruff GN. The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha2delta subunit of a calcium channel. J Biol Chem. 1996;271(10):5768–76. https://doi.org/10.1074/jbc.271.10.5768.

Article  PubMed  CAS  Google Scholar 

• Wright CS, Robling AG, Farach-Carson MC, Thompson WR. Skeletal functions of voltage sensitive calcium channels. Current osteoporosis reports. 2021;19(2):206-21. https://doi.org/10.1007/s11914-020-00647-7. A comprehensive review of the function of voltage-gated calcium channels in bone cells and their regulation of bone development, bone formation, and mechanotransduction.

Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev. 2005;57(4):411–25. https://doi.org/10.1124/pr.57.4.5.

Article  PubMed  CAS  Google Scholar 

Dolphin AC. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. J Physiol. 2016;594(19):5369–90. https://doi.org/10.1113/JP272262.

Article  PubMed  PubMed Central  CAS  Google Scholar 

De Jongh KS, Warner C, Catterall WA. Subunits of purified calcium channels. Alpha 2 and delta are encoded by the same gene. J Biol Chem. 1990;265(25):14738–41. https://doi.org/10.1016/S0021-9258(18)77174-3.

Article  PubMed  Google Scholar 

Davies A, Kadurin I, Alvarez-Laviada A, Douglas L, Nieto-Rostro M, Bauer CS, Pratt WS, Dolphin AC. The alpha2delta subunits of voltage-gated calcium channels form GPI-anchored proteins, a posttranslational modification essential for function. Proc Natl Acad Sci U S A. 2010;107(4):1654–9. https://doi.org/10.1073/pnas.0908735107.

Article  PubMed  PubMed Central  Google Scholar 

Canti C, Nieto-Rostro M, Foucault I, Heblich F, Wratten J, Richards MW, et al. The metal-ion-dependent adhesion site in the Von Willebrand factor-A domain of alpha2delta subunits is key to trafficking voltage-gated Ca2+ channels. Proc Natl Acad Sci U S A. 2005;102(32):11230–5. https://doi.org/10.1073/pnas.0504183102.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dolphin AC. Voltage-gated calcium channel alpha 2delta subunits: an assessment of proposed novel roles. F1000Res. 2018;7. https://doi.org/10.12688/f1000research.16104.1.

Klugbauer N, Lacinova L, Marais E, Hobom M, Hofmann F. Molecular diversity of the calcium channel alpha2delta subunit. J Neurosci. 1999;19(2):684–91. https://doi.org/10.1523/JNEUROSCI.19-02-00684.1999.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Qin N, Yagel S, Momplaisir ML, Codd EE, D'Andrea MR. Molecular cloning and characterization of the human voltage-gated calcium channel alpha(2)delta-4 subunit. Mol Pharmacol. 2002;62(3):485–96. https://doi.org/10.1124/mol.62.3.485.

Article  PubMed  CAS  Google Scholar 

Hendrich J, Van Minh AT, Heblich F, Nieto-Rostro M, Watschinger K, Striessnig J, et al. Pharmacological disruption of calcium channel trafficking by the alpha2delta ligand gabapentin. Proc Natl Acad Sci U S A. 2008;105(9):3628–33. https://doi.org/10.1073/pnas.0708930105.

Article  PubMed  PubMed Central  Google Scholar 

Marais E, Klugbauer N, Hofmann F. Calcium channel alpha(2)delta subunits-structure and Gabapentin binding. Mol Pharmacol. 2001;59(5):1243–8. https://doi.org/10.1124/mol.59.5.1243.

Article  PubMed  CAS  Google Scholar 

Wang M, Offord J, Oxender DL, Su TZ. Structural requirement of the calcium-channel subunit alpha2delta for gabapentin binding. Biochem J. 1999;342(Pt 2):313–20. https://doi.org/10.1042/bj3420313.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cassidy JS, Ferron L, Kadurin I, Pratt WS, Dolphin AC. Functional exofacially tagged N-type calcium channels elucidate the interaction with auxiliary alpha2delta-1 subunits. Proc Natl Acad Sci U S A. 2014;111(24):8979–84. https://doi.org/10.1073/pnas.1403731111.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fink K, Meder W, Dooley DJ, Gothert M. Inhibition of neuronal Ca(2+) influx by gabapentin and subsequent reduction of neurotransmitter release from rat neocortical slices. Br J Pharmacol. 2000;130(4):900–6. https://doi.org/10.1038/sj.bjp.0703380.

Article  PubMed  PubMed Central  CAS  Google Scholar 

van Hooft JA, Dougherty JJ, Endeman D, Nichols RA, Wadman WJ. Gabapentin inhibits presynaptic Ca(2+) influx and synaptic transmission in rat hippocampus and neocortex. Eur J Pharmacol. 2002;449(3):221–8. https://doi.org/10.1016/s0014-2999(02)02044-7.

Article  PubMed  Google Scholar 

Kadurin I, Rothwell SW, Lana B, Nieto-Rostro M, Dolphin ACJSr. LRP1 influences trafficking of N-type calcium channels via interaction with the auxiliary α 2 δ-1 subunit. 2017;7(1):1-17. https://doi.org/10.1038/srep43802.

Eroglu C, Allen NJ, Susman MW, O’Rourke NA, Park CY, Özkan E, et al. Gabapentin receptor α2δ-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. 2009;139(2):380-92. https://doi.org/10.1016/j.cell.2009.09.025.

Chen J, Li L, Chen S-R, Chen H, Xie J-D, Sirrieh RE, et al. The α2δ-1-NMDA receptor complex is critically involved in neuropathic pain development and gabapentin therapeutic actions. 2018;22(9):2307-21. https://doi.org/10.1016/j.celrep.2018.02.021.

Brockhaus J, Schreitmuller M, Repetto D, Klatt O, Reissner C, Elmslie K, et al. alpha-Neurexins together with alpha2delta-1 auxiliary subunits regulate Ca(2+) influx through Cav2.1 channels. J Neurosci. 2018;38(38):8277–94. https://doi.org/10.1523/JNEUROSCI.0511-18.2018.

Article  PubMed  PubMed Central  CAS  Google Scholar 

• Taylor CP, Harris EW. Analgesia with gabapentin and pregabalin may involve N-methyl-d-aspartate receptors, neurexins, and thrombospondins. J Pharmacol Exp Ther. 2020;374(1):161-74. https://doi.org/10.1124/jpet.120.266056. Interesting review discussing the interaction of a2d-1 with N-methyl-D-aspartate–sensitive glutamate receptors, neurexin1a, thrombospondins, and other presynaptic proteins, in addition to actions at calcium channels, and the importance of these findings for gabapentin and pregabalin therapeutic effects.

Jette N, Lix LM, Metge CJ, Prior HJ, McChesney J, Leslie WD. Association of antiepileptic drugs with nontraumatic fractures: a population-based analysis. Arch Neurol. 2011;68(1):107–12. https://doi.org/10.1001/archneurol.2010.341.

Article  PubMed  Google Scholar 

Ensrud KE, Walczak TS, Blackwell TL, Ensrud ER, Barrett-Connor E, Orwoll ES, For the Osteoporotic Fractures in Men (MrOS) Study Research Group. Antiepileptic drug use and rates of hip bone loss in older men: a prospective study. Neurology. 2008;71(10):723–30. https://doi.org/10.1212/01.wnl.0000324919.86696.a9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

•• Chandrasekaran V, Pasco JA, Stuart AL, Brennan-Olsen SL, Berk M, Hodge JM, et al. Anticonvulsant use and bone health in a population-based study of men and women: cross-sectional data from the Geelong Osteoporosis Study. Bmc Musculoskel Dis. 2021;22(1):172. https://doi.org/10.1186/s12891-021-04042-w. This study evaluated the association between anticonvulsant use and bone health in a population-based sample of men and women. The main findings were that bone quantity and quality were lower for users of anticonvulsants.

•• Baddoo DR, Mills AA, Kullab RB, Al-Mashat H, Andersen NB, Jorgensen NR, et al. Metabolic bone disease in patients with epilepsy and the use of antiepileptic drugs-Insight from a Danish cross-sectional study. Seizure-Eur J Epilep. 2021;86:29-34. https://doi.org/10.1016/j.seizure.2021.01.008. A recent cross-sectional study showing a clear association between the use of AEDs and decreased bone mineral density in a large population of Danish patients with epilepsy.

Andress DL, Ozuna J, Tirschwell D, Grande L, Johnson M, Jacobson AF, Spain W. Antiepileptic drug-induced bone loss in young male patients who have seizures. Arch Neurol. 2002;59(5):781–6. https://doi.org/10.1001/archneur.59.5.781.

Article  PubMed  Google Scholar 

Hegde V, Shekar N, Garrett F, Baz M, Anstead M. Pregabalin-induced myopathy in a double lung transplant recipient. Cureus. 2020;12(12):e11935. https://doi.org/10.7759/cureus.11935.

Article  PubMed  PubMed Central  Google Scholar 

Tuccori M, Lombardo G, Lapi F, Vannacci A, Blandizzi C, Del Tacca M. Gabapentin-induced severe myopathy. Ann Pharmacother. 2007;41(7):1301–5. https://doi.org/10.1345/aph.1K077.

Article  PubMed  CAS  Google Scholar 

Coupal TM, Chang DR, Pennycooke K, Ouellette HA, Munk PL. Radiologic findings in gabapentin-induced myositis. J Radiol Case Rep. 2017;11(4):30–7. https://doi.org/10.3941/jrcr.v11i4.3092.

Article 

留言 (0)

沒有登入
gif