Microfluidic Co-culture Platforms for Studying Osteocyte Regulation of Other Cell Types under Dynamic Mechanical Stimulation

Lin CY, Xu LH, You L. Technical approaches for studying the communications between osteocytes and cancer cells. Bone cancer: bone sarcomas and bone metastases - from Bench to Bedside 2021:157–168. https://doi.org/10.1016/B978-0-12-821666-8.00067-0.

Uda Y, Azab E, Sun N, Shi C, Pajevic PD. Osteocyte mechanobiology. Curr Osteoporos Rep. 2017;15:318–25. https://doi.org/10.1007/s11914-017-0373-0.

Article  PubMed  PubMed Central  Google Scholar 

You L, Cowin SC, Schaffler MB, Weinbaum S. A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J Biomech. 2001;34:1375–86. https://doi.org/10.1016/S0021-9290(01)00107-5.

CAS  Article  PubMed  Google Scholar 

Han Y, Cowin SC, Schaffler MB, Weinbaum S. Mechanotransduction and strain amplification in osteocyte cell processes. Proc Natl Acad Sci USA. 2004;101:16689–94. https://doi.org/10.1073/pnas.0407429101.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wang Y, McNamara LM, Schaffler MB, Weinbaum S. A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci USA. 2007;104:15941–6. https://doi.org/10.1073/pnas.0707246104.

Article  PubMed  PubMed Central  Google Scholar 

Wang Y, McNamara LM, Schaffler MB, Weinbaum S. Strain amplification and integrin based signaling in osteocytes. J Musculoskelet Neuronal Interact. 2008;8:332–4.

CAS  PubMed  Google Scholar 

Pathak JL, Bravenboer N, Luyten FP, Verschueren P, Lems WF, Klein-Nulend J, et al. Mechanical loading reduces inflammation-induced human osteocyte-to-osteoclast communication. Calcif Tissue Int. 2015;97:169–78. https://doi.org/10.1007/S00223-015-9999-z.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kulkarni RN, Bakker AD, Everts V, Klein-Nulend J. Mechanical loading prevents the stimulating effect of IL-1β on osteocyte-modulated osteoclastogenesis. Biochem Biophys Res Commun. 2012;420:11–6. https://doi.org/10.1016/j.bbrc.2012.02.099.

CAS  Article  PubMed  Google Scholar 

Fan Y, Jalali A, Chen A, Zhao X, Liu S, Teli M, et al. Skeletal loading regulates breast cancer-associated osteolysis in a loading intensity-dependent fashion. Bone Res. 2020;8:1–11. https://doi.org/10.1038/s41413-020-0083-6.

CAS  Article  Google Scholar 

Eichholz KF, Woods I, Riffault M, Johnson GP, Corrigan M, Lowry MC, et al. Human bone marrow stem/stromal cell osteogenesis is regulated via mechanically activated osteocyte-derived extracellular vesicles. Stem Cells Transl Med. 2020;9:1431–47. https://doi.org/10.1002/sctm.19-0405.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cheung WY, Liu C, Tonelli-Zasarsky RML, Simmons CA, You L. Osteocyte apoptosis is mechanically regulated and induces angiogenesis in vitro. J Orthop Res. 2011;29:523–30. https://doi.org/10.1002/jor.21283.

Article  PubMed  Google Scholar 

Asada N, Katayama Y, Sato M, Minagawa K, Wakahashi K, Kawano H, et al. Matrix-embedded osteocytes regulate mobilization of hematopoietic stem/progenitor cells. Cell Stem Cell. 2013;12:737–47. https://doi.org/10.1016/j.stem.2013.05.001.

CAS  Article  PubMed  Google Scholar 

Croucher PI, McDonald MM, Martin TJ. Bone metastasis: the importance of the neighbourhood. Nat Rev Cancer. 2016;16:373–86. https://doi.org/10.1038/nrc.2016.44.

CAS  Article  PubMed  Google Scholar 

Méndez-Ferrer S, Bonnet D, Steensma DP, Hasserjian RP, Ghobrial IM, Gribben JG, et al. Bone marrow niches in haematological malignancies. Nat Rev Cancer. 2020;20:285–98. https://doi.org/10.1038/s41568-020-0245-2.

CAS  Article  PubMed  Google Scholar 

Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L, et al. Bone metastases: an overview. Oncol Rev. 2017;11:321. https://doi.org/10.4081/oncol.2017.321.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Coughlin TR, Romero-Moreno R, Mason DE, Nystrom L, Boerckel JD, Niebur G, et al. Bone: a fertile soil for cancer metastasis. Curr Drug Targets. 2017;18:1281–95. https://doi.org/10.2174/1389450117666161226121650.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2:584–93. https://doi.org/10.1038/nrc867.

CAS  Article  PubMed  Google Scholar 

Zhou JZ, Riquelme MA, Gao X, Ellies LG, Sun LZ, Jiang JX. Differential impact of adenosine nucleotides released by osteocytes on breast cancer growth and bone metastasis. Oncogene. 2014;34:1831–42. https://doi.org/10.1038/onc.2014.113.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sottnik JL, Dai J, Zhang H, Campbell B, Keller ET. Tumor-induced pressure in the bone microenvironment causes osteocytes to promote the growth of prostate cancer bone metastases. Cancer Res. 2015;75:2151–8. https://doi.org/10.1158/0008-5472.can-14-2493.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Delgado-Calle J, Anderson J, Cregor MD, Hiasa M, Chirgwin JM, Carlesso N, et al. Bidirectional notch signaling and osteocyte-derived factors in the bone marrow microenvironment promote tumor cell proliferation and bone destruction in multiple myeloma. Cancer Res. 2016;76:1089–100. https://doi.org/10.1158/0008-5472.can-15-1703.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wang S, Pei S, Wasi M, Parajuli A, Yee A, You L, et al. Moderate tibial loading and treadmill running, but not overloading, protect adult murine bone from destruction by metastasized breast cancer. Bone. 2021;153:116100. https://doi.org/10.1016/j.bone.2021.116100.

CAS  Article  PubMed  Google Scholar 

Melville KM, Robling AG, van der Meulen MC. In vivo axial loading of the mouse tibia. Methods Mol Biol. 2015;1226:99–115. https://doi.org/10.1007/978-1-4939-1619-1.

Article  PubMed  PubMed Central  Google Scholar 

Gardinier JD, Rostami N, Juliano L, Zhang C. Bone adaptation in response to treadmill exercise in young and adult mice. Bone Rep. 2018;8:29–37. https://doi.org/10.1016/j.bonr.2018.01.003.

Article  PubMed  PubMed Central  Google Scholar 

Vanleene M, Shefelbine SJ. Therapeutic impact of low amplitude high frequency whole body vibrations on the osteogenesis imperfecta mouse bone. Bone. 2013;53:507–14. https://doi.org/10.1016/j.bone.2013.01.023.

Article  PubMed  PubMed Central  Google Scholar 

Lynch MA, Brodt MD, Silva MJ. Skeletal effects of whole-body vibration in adult and aged mice. J Orthop Res. 2010;28:241–7. https://doi.org/10.1002/jor.20965.

Article  PubMed  PubMed Central  Google Scholar 

Nijweide PJ, Mulder RJP. Identification of osteocytes in osteoblast-like cell cultures using a monoclonal antibody specifically directed against osteocytes. Histochemistry. 1986;84:342–7. https://doi.org/10.1007/BF00482961.

CAS  Article  PubMed  Google Scholar 

Bruder SP, Caplan AI. Terminal differentiation of osteogenic cells in the embryonic chick tibia is revealed by a monoclonal antibody against osteocytes. Bone. 1990;11:189–98. https://doi.org/10.1016/8756-3282(90)90213-i.

CAS  Article  PubMed  Google Scholar 

Kalajzic I, Matthews BG, Torreggiani E, Harris MA, Divieti Pajevic P, Harris SE. In vitro and in vivo approaches to study osteocyte biology. Bone. 2013;54:296–306. https://doi.org/10.1016/j.bone.2012.09.040.

CAS  Article  PubMed  Google Scholar 

Frangos JA, McIntire LV, Eskin SG. Shear stress induced stimulation of mammalian cell metabolism. Biotechnol Bioeng. 1988;32:1053–60. https://doi.org/10.1002/bit.260320812.

CAS  Article  PubMed  Google Scholar 

Huesa C, Helfrich MH, Aspden RM. Parallel-plate fluid flow systems for bone cell stimulation. J Biomech. 2010;43:1182–9. https://doi.org/10.1016/j.jbiomech.2009.11.029.

Article  PubMed  Google Scholar 

Middleton K, Al-Dujaili S, Mei X, Günther A, You L. Microfluidic co-culture platform for investigating osteocyte-osteoclast signalling during fluid shear stress mechanostimulation. J Biomech. 2017;59:35–42. https://doi.org/10.1016/j.jbiomech.2017.05.012.

CAS  Article  PubMed  Google Scholar 

•• Xu L, Song X, Carroll G, You L. Novel in vitro microfluidic platform for osteocyte mechanotransduction studies. Integr Biol (Camb) 2020:12:303–310. https://doi.org/10.1093/intbio/zyaa025. Microfluidic platform for investigating mechanically stimulated osteocytes in the regulation of osteoclastogenesis under multi-level shear stress.

•• Mei X, Middleton K, Shim D, Wan Q, Xu L, Ma YHV, et al. Microfluidic platform for studying osteocyte mechanoregulation of breast cancer bone metastasis. Integr Biol (Camb) 2019:11:119–129. https://doi.org/10.1093/intbio/zyz008. Microfludic co-culture platform to study osteocyte regulation of breast cancer extravasation under fluid flow.

• Song X, Lin CY, Arjun R, Ke Y, Wang L, You L. Vibration in preventing breast cancer bone metastasis. JBMR 2022:37:202. Microfludic co-culture platform to study osteocyte regulation of breast cancer extravasation under vibration.

George EL, Truesdell SL, York SL, Saunders MM. Lab-on-a-chip platforms for quantification of multicellular interactions in bone remodeling. Exp Cell Res. 2018;365:106–18. https://doi.org/10.1016/j.yexcr.2018.02.027.

CAS  Article  PubMed  Google Scholar 

Wei C, Fan B, Chen D, Liu C, Wei Y, Huo B, et al. Osteocyte culture in microfluidic devices. Biomicrofluidics. 2015;9:1–10. https://doi.org/10.1063/1.4905692.

CAS  Article  Google Scholar 

Ono T, Nakashima T. Recent advances in osteoclast biology. Histochem Cell Biol. 2018;149:325–41. https://doi.org/10.1007/s00418-018-1636-2.

CAS  Article  PubMed  Google Scholar 

Zhao S, Kato Y, Zhang Y, Harris S, Ahuja SS, Bonewald LF. MLO-Y4 osteocyte-like cells support osteoclast formation and activation. J Bone Miner Res. 2002;17:2068–79. https://doi.org/10.1359/jbmr.2002.17.11.2068.

CAS  Article  PubMed 

留言 (0)

沒有登入
gif