Machine learning-derived prediction of in-hospital mortality in patients with severe acute respiratory infection: analysis of claims data from the German-wide Helios hospital network

SPRINT-SARI-Investigators: For the SPRINT-SARI-Investigators: using research to prepare for outbreaks of severe acute respiratory infection. BMJ Global Health 2019, 4:e001061.

Fitzner J, Qasmieh S, Mounts AW, Alexander B, Besselaar T, Briand S, Brown C, Clark S, Dueger E, Gross D, et al. Revision of clinical case definitions: influenza-like illness and severe acute respiratory infection. Bull World Health Organ. 2018;96:122–8.

Article  Google Scholar 

Kumar A. Critically Ill patients with 2009 influenza A(H1N1) infection in Canada. JAMA. 1872;2009:302.

Google Scholar 

Martirosyan L, Paget WJ, Jorgensen P, Brown CS, Meerhoff TJ, Pereyaslov D, Mott JA. The community impact of the 2009 influenza pandemic in the WHO European Region: a comparison with historical seasonal data from 28 countries. BMC Infect Dis. 2012;12:36.

Article  Google Scholar 

Troeger C, Forouzanfar M, Rao PC, Khalil I, Brown A, Swartz S, Fullman N, Mosser J, Thompson RL, Reiner RC, et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect Dis. 2017;17:1133–61.

Article  Google Scholar 

Murthy S, Archambault PM, Atique A, Carrier FM, Cheng MP, Codan C, Daneman N, Dechert W, Douglas S, Fiest KM, et al. Characteristics and outcomes of patients with COVID-19 admitted to hospital and intensive care in the first phase of the pandemic in Canada: a national cohort study. CMAJ Open. 2021;9:E181–8.

Article  Google Scholar 

Sakr Y, Ferrer R, Reinhart K, Beale R, Rhodes A, Moreno R, Timsit JF, Brochard L, Thompson BT, Rezende E, Chiche JD. The Intensive Care Global Study on Severe Acute Respiratory Infection (IC-GLOSSARI): a multicenter, multinational, 14-day inception cohort study. Intensive Care Med. 2016;42:817–28.

Article  Google Scholar 

Buda S, Tolksdorf K, Schuler E, Kuhlen R, Haas W. Establishing an ICD-10 code based SARI-surveillance in Germany – description of the system and first results from five recent influenza seasons. BMC Public Health. 2017. https://doi.org/10.1186/s12889-017-4515-1.

Article  PubMed  PubMed Central  Google Scholar 

Shamout F, Zhu T, Clifton DA. Machine learning for clinical outcome prediction. IEEE Rev Biomed Eng. 2021;14:116–26.

Article  Google Scholar 

Abdulaal A, Patel A, Charani E, Denny S, Alqahtani SA, Davies GW, Mughal N, Moore LSP. Comparison of deep learning with regression analysis in creating predictive models for SARS-CoV-2 outcomes. BMC Med Inform Decis Mak. 2020. https://doi.org/10.1186/s12911-020-01316-6.

Article  PubMed  PubMed Central  Google Scholar 

Ning W, Lei S, Yang J, Cao Y, Jiang P, Yang Q, Zhang J, Wang X, Chen F, Geng Z, et al. Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat Biomed Eng. 2020;4:1197–207.

CAS  Article  Google Scholar 

Zhu JS, Ge P, Jiang C, Zhang Y, Li X, Zhao Z, Zhang L, Duong TQ. Deep-learning artificial intelligence analysis of clinical variables predicts mortality in COVID-19 patients. J Am Coll Emerg Physicians Open. 2020. https://doi.org/10.1002/emp2.12205.

Article  PubMed  PubMed Central  Google Scholar 

Cooper GF, Abraham V, Aliferis CF, Aronis JM, Buchanan BG, Caruana R, Fine MJ, Janosky JE, Livingston G, Mitchell T, et al. Predicting dire outcomes of patients with community acquired pneumonia. J Biomed Inform. 2005;38:347–66.

Article  Google Scholar 

Jones BE, Ying J, Nevers M, Alba PR, He T, Patterson OV, Jones MM, Stevens V, Shen J, Humpherys J, et al. Computerized mortality prediction for community-acquired pneumonia at 117 VA medical centers. Ann Am Thorac Soc. 2021. https://doi.org/10.1513/AnnalsATS.202011-1372OC.

Article  PubMed  PubMed Central  Google Scholar 

Hu C-A, Chen C-M, Fang Y-C, Liang S-J, Wang H-C, Fang W-F, Sheu C-C, Perng W-C, Yang K-Y, Kao K-C, et al. Using a machine learning approach to predict mortality in critically ill influenza patients: a cross-sectional retrospective multicentre study in Taiwan. BMJ Open. 2020;10: e033898.

Article  Google Scholar 

Wu C, Rosenfeld R, Clermont G. Using data-driven rules to predict mortality in severe community acquired pneumonia. PLoS ONE. 2014;9: e89053.

Article  Google Scholar 

Bratzler DW, Normand S-LT, Wang Y, O'Donnell WJ, Metersky M, Han LF, Rapp MT, Krumholz HM: An Administrative Claims Model for Profiling Hospital 30-Day Mortality Rates for Pneumonia Patients. PLoS ONE 2011, 6:e17401.

Uematsu H, Kunisawa S, Sasaki N, Ikai H, Imanaka Y. Development of a risk-adjusted in-hospital mortality prediction model for community-acquired pneumonia: a retrospective analysis using a Japanese administrative database. BMC Pulm Med. 2014;14:203.

Article  Google Scholar 

Lim WS. Defining community acquired pneumonia severity on presentation to hospital: an international derivation and validation study. Thorax. 2003;58:377–82.

CAS  Article  Google Scholar 

Bauer TT, Ewig S, Marre R, Suttorp N, Welte T. CRB-65 predicts death from community-acquired pneumonia*. J Intern Med. 2006;260:93–101.

CAS  Article  Google Scholar 

Fine MJ, Auble TE, Yealy DM, Hanusa BH, Weissfeld LA, Singer DE, Coley CM, Marrie TJ, Kapoor WN. A Prediction rule to identify low-risk patients with community-acquired pneumonia. N Engl J Med. 1997;336:243–50.

CAS  Article  Google Scholar 

Aujesky D, Fine MJ. The pneumonia severity index: a decade after the initial derivation and validation. Clin Infect Dis. 2008;47(Suppl 3):S133-139.

Article  Google Scholar 

Di Tanna GL, Wirtz H, Burrows KL, Globe G. Evaluating risk prediction models for adults with heart failure: A systematic literature review. PLoS ONE. 2020;15: e0224135.

Article  Google Scholar 

Rahimi K, Bennett D, Conrad N, Williams TM, Basu J, Dwight J, Woodward M, Patel A, McMurray J, MacMahon S. Risk prediction in patients with heart failure: a systematic review and analysis. JACC Heart Fail. 2014;2:440–6.

Article  Google Scholar 

Adler ED, Voors AA, Klein L, Macheret F, Braun OO, Urey MA, Zhu W, Sama I, Tadel M, Campagnari C, et al. Improving risk prediction in heart failure using machine learning. Eur J Heart Fail. 2020;22:139–47.

Article  Google Scholar 

König S, Pellissier V, Hohenstein S, Bernal A, Ueberham L, Meier-Hellmann A, Kuhlen R, Hindricks G, Bollmann A. Machine ​learning algorithms for claims data-based prediction of in-hospital mortality in patients with heart failure. ESC Heart Fail. 2021. https://doi.org/10.1002/ehf2.13398.

Article  PubMed  PubMed Central  Google Scholar 

Bundesinstitut für Arzneimittel und Medizinprodukte (Federal Institute for Drugs and Medical Devices): International Statistical Classification of Diseases and Related Health Problems, 10. Revision, German Modification, Version 2021. https://www.dimdi.de/static/de/klassifikationen/icd/icd-10-gm/kode-suche/htmlgm2021/#X. Accessed 22 March 2022.

Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, Saunders LD, Beck CA, Feasby TE, Ghali WA. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43:1130–9.

Article  Google Scholar 

Moore BJ, White S, Washington R, Coenen N, Elixhauser A. Identifying increased risk of readmission and in-hospital mortality using hospital administrative data: the AHRQ Elixhauser comorbidity index. Med Care. 2017;55:698–705.

Article  Google Scholar 

Lundberg SM, Lee S-I: A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. pp. 4768-4777. Long Beach, California, USA: Curran Associates Inc.; 2017:4768-4777.

Huang Y, Li W, Macheret F, Gabriel RA, Ohno-Machado L. A tutorial on calibration measurements and calibration models for clinical prediction models. J Am Med Inform Assoc. 2020;27:621–33.

Article  Google Scholar 

DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.

CAS  Article  Google Scholar 

Tolksdorf KBS, Schuler E, Wieler LH, Haas W. Eine höhere Letalität und lange Beatmungsdauer unterscheiden COVID-19 von schwer verlaufenden Atemwegsinfektionen in Grippewellen. Epid Bull. 2020;2020(41):3–10.

Google Scholar 

Kompaniyets L, Goodman AB, Belay B, Freedman DS, Sucosky MS, Lange SJ, Gundlapalli AV, Boehmer TK, Blanck HM. Body mass index and risk for COVID-19-related hospitalization, intensive care unit admission, invasive mechanical ventilation, and death—United States, March-December 2020. Morb Mortal Wkly Rep. 2021;70:355–61.

CAS  Article  Google Scholar 

Sakr Y, Alhussami I, Nanchal R, Wunderink RG, Pellis T, Wittebole X, Martin-Loeches I, François B, Leone M, Vincent JL. Being overweight is associated with greater survival in ICU patients: results from the intensive care over nations audit. Crit Care Med. 2015;43:2623–32.

Article  Google Scholar 

Ni Y-N, Luo J, Yu H, Wang Y-W, Hu Y-H, Liu D, Liang B-M, Liang Z-A. Can body mass index predict clinical outcomes for patients with acute lung injury/acute respiratory distress syndrome? A meta-analysis. Crit Care. 2017. https://doi.org/10.1186/s13054-017-1615-3.

Article  PubMed  PubMed Central  Google Scholar 

Krumholz HM, Wang Y, Mattera JA, Wang Y, Han LF, Ingber MJ, Roman S, Normand S-LT. An administrative claims model suitable for profiling hospital performance based on 30-day mortality rates among patients with an acute myocardial infarction. Circulation. 2006;113:1683–92.

Article  Google Scholar 

Krumholz HM, Wang Y, Mattera JA, Wang Y, Han LF, Ingber MJ, Roman S, Normand S-LT. An administrative claims model suitable for profiling hospital performance based on 30-day mortality rates among patients with heart failure. Circulation. 2006;113:1693–701.

Article  Google Scholar 

Khera R, Krumholz HM. With great power comes great responsibility. Circulation. 2017;10:e003846.

PubMed  Google Scholar 

Konig S, Ueberham L, Schuler E, Wiedemann M, Reithmann C, Seyfarth M, Sause A, Tebbenjohanns J, Schade A, Shin DI, et al. In-hospital mortality of patients with atrial arrhythmias: insights from the German-wide Helios hospital network of 161,502 patients and 34,025 arrhythmia-related procedures. Eur Heart J. 2018;39:3947–57.

Article  Google Scholar 

Ahn JH, Choi EY. Expanded A-DROP score: a new scoring system for the prediction of mortality in hospitalized patients with community-acquired pneumonia. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-32750-2.

Article  PubMed  PubMed Central  Google Scholar 

Davis J, Goadrich M. The relationship between Precision-Recall and ROC curves. In: Proceedings of the 23rd international conference on Machine learning. Pittsburgh, Pennsylvania, USA: Association for Computing Machinery; 2006; pp. 233-240.

Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, Dowell SF, File TM, Musher DM, Niederman MS, et al. Infectious diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007;44:S27–72.

CAS  Article  Google Scholar 

Johnson EK, Nelson CP. Values and pitfalls of the use of administrative databases for outcomes assessment. J Urol. 2013;190:17–8.

Article  Google Scholar 

留言 (0)

沒有登入
gif