A high quality, industrial data set for binding affinity prediction: performance comparison in different early drug discovery scenarios

Kuhn B, Fuchs JE, Reutlinger M et al (2011) Rationalizing tight ligand binding through cooperative interaction networks. J Chem Inf Model 51:3180–3198. https://doi.org/10.1021/ci200319e

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chan L, Morris GM, Hutchison GR (2021) Understanding conformational entropy in small molecules. J Chem Theory Comput 17:2099–2106. https://doi.org/10.1021/acs.jctc.0c01213

CAS  Article  PubMed  Google Scholar 

Tosstorff A, Cole JC, Taylor R et al (2020) Identification of noncompetitive protein–ligand interactions for structural optimization. J Chem Inf Model 60:6595–6611. https://doi.org/10.1021/acs.jcim.0c00858

CAS  Article  PubMed  Google Scholar 

Bash PA, Singh UC, Langridge R, Kollman PA (1987) Free energy calculations by computer simulation. Science 236:564–568. https://doi.org/10.1126/science.3576184

CAS  Article  PubMed  Google Scholar 

Hochuli J, Helbling A, Skaist T et al (2018) Visualizing convolutional neural network protein-ligand scoring. J Mol Graph Model 84:96–108. https://doi.org/10.1016/j.jmgm.2018.06.005

CAS  Article  PubMed  PubMed Central  Google Scholar 

Brown BP, Mendenhall J, Geanes AR, Meiler J (2021) General purpose structure-based drug discovery neural network score functions with human-interpretable pharmacophore maps. J Chem Inf Model 61:603–620. https://doi.org/10.1021/acs.jcim.0c01001

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gomes J, Ramsundar B, Feinberg EN, Pande VS (2017) Atomic convolutional networks for predicting protein-ligand binding affinity. Arxiv. https://doi.org/10.48550/arXiv.1703.10603

Wang R, Fang X, Lu Y, Wang S (2004) The PDBbind database: collection of binding affinities for protein−ligand complexes with known three-dimensional structures. J Med Chem 47:2977–2980. https://doi.org/10.1021/jm030580l

CAS  Article  PubMed  Google Scholar 

Liu T, Lin Y, Wen X et al (2007) BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res 35:D198–D201. https://doi.org/10.1093/nar/gkl999

CAS  Article  PubMed  Google Scholar 

Affinity Data PDB code 2W9H. http://www.bindingdb.org/jsp/dbsearch/PrimarySearch_pdbids.jsp?pdbids_submit=Search&pdbids=2W9H. Accessed 26 Jan 2022

Mysinger MM, Carchia M, John JI, Shoichet BK (2012) Directory of Useful Decoys, Enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594. https://doi.org/10.1021/jm300687e

CAS  Article  PubMed  PubMed Central  Google Scholar 

Rohrer SG, Baumann K (2009) Maximum Unbiased Validation (MUV) data sets for virtual screening based on pubchem bioactivity data. J Chem Inf Model 49:169–184. https://doi.org/10.1021/ci8002649

CAS  Article  PubMed  Google Scholar 

Tran-Nguyen V-K, Jacquemard C, Rognan D (2020) LIT-PCBA: an unbiased data set for machine learning and virtual screening. J Chem Inf Model 60:4263–4273. https://doi.org/10.1021/acs.jcim.0c00155

CAS  Article  PubMed  Google Scholar 

Chappie TA, Helal CJ, Hou X (2012) Current landscape of phosphodiesterase 10A (PDE10A) inhibition. J Med Chem 55:7299–7331. https://doi.org/10.1021/jm3004976

CAS  Article  PubMed  Google Scholar 

Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748. https://doi.org/10.1006/jmbi.1996.0897

CAS  Article  PubMed  Google Scholar 

Korb O, Stützle T, Exner TE (2009) Empirical scoring functions for advanced protein−ligand docking with PLANTS. J Chem Inf Model 49:84–96. https://doi.org/10.1021/ci800298z

CAS  Article  PubMed  Google Scholar 

Tosstorff A, Cole JC, Bartelt R, Kuhn B (2021) Augmenting structure-based design with experimental protein-ligand interaction data: molecular recognition, interactive visualization, and rescoring. Chem Med Chem 16:3428–3438. https://doi.org/10.1002/cmdc.202100387

CAS  Article  PubMed  Google Scholar 

Feinberg EN, Sur D, Wu Z et al (2018) PotentialNet for molecular property prediction. ACS Central Sci 4:1520–1530. https://doi.org/10.1021/acscentsci.8b00507

CAS  Article  Google Scholar 

Xiong Z, Wang D, Liu X et al (2020) Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism. J Med Chem 63:8749–8760. https://doi.org/10.1021/acs.jmedchem.9b00959

CAS  Article  PubMed  Google Scholar 

Stumpfe D, Hu H, Bajorath J (2019) Evolving concept of activity cliffs. ACS Omega 4:14360–14368. https://doi.org/10.1021/acsomega.9b02221

CAS  Article  PubMed  PubMed Central  Google Scholar 

Thomas M, Smith RT, O’Boyle NM et al (2021) Comparison of structure- and ligand-based scoring functions for deep generative models: a GPCR case study. J Cheminformatics 13:39. https://doi.org/10.1186/s13321-021-00516-0

CAS  Article  Google Scholar 

Wang L, Chambers J, Abel R (2019) Biomolecular simulations, methods and protocols. Methods Mol Biol 2022:201–232. https://doi.org/10.1007/978-1-4939-9608-7_9

CAS  Article  PubMed  Google Scholar 

Yung-Chi C, Prusoff WH (1973) Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (IC ) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108. https://doi.org/10.1016/0006-2952(73)90196-2

Article  Google Scholar 

Proasis. Desert Scientific Software, Sydney, Australia

Landrum G RDKit. https://doi.org/10.5281/zenodo.5589557

Morgan HL (1965) The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service. J Chem Doc 5:107–113. https://doi.org/10.1021/c160017a018

CAS  Article  Google Scholar 

Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

Google Scholar 

Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge Structural database. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:171–179. https://doi.org/10.1107/s2052520616003954

CAS  Article  Google Scholar 

Hawkins PCD, Skillman AG, Warren GL et al (2010) Conformer generation with OMEGA: algorithm and validation using high quality structures from the protein databank and cambridge structural database. J Chem Inf Model 50:572–584. https://doi.org/10.1021/ci100031x

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cruciani G, Milletti F, Storchi L et al (2009) In silico pKa prediction and ADME profiling. Chem Biodivers 6:1812–1821. https://doi.org/10.1002/cbdv.200900153

CAS  Article  PubMed  Google Scholar 

Virtanen P, Gommers R, Oliphant TE et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17:261–272. https://doi.org/10.1038/s41592-019-0686-2

CAS  Article  PubMed  PubMed Central  Google Scholar 

O’Boyle NM, Brewerton SC, Taylor R (2008) Using buriedness to improve discrimination between actives and inactives in docking. J Chem Inf Model 48:1269–1278. https://doi.org/10.1021/ci8000452

CAS  Article  PubMed  Google Scholar 

Eldridge MD, Murray CW, Auton TR et al (1997) Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aid Mol Des 11:425–445. https://doi.org/10.1023/a:1007996124545

CAS  Article  Google Scholar 

Li M, Zhou J, Hu J et al (2021) DGL-lifesci: an open-source toolkit for deep learning on graphs in life science. ACS Omega 6:27233–27238. https://doi.org/10.1021/acsomega.1c04017

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cleves AE, Johnson SR, Jain AN (2021) Synergy and complementarity between focused machine learning and physics-based simulation in affinity prediction. J Chem Inf Model 61:5948–5966. https://doi.org/10.1021/acs.jcim.1c01382

CAS  Article  PubMed  Google Scholar 

Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9:90–95. https://doi.org/10.1109/mcse.2007.55

Article  Google Scholar 

Waskom ML (2021) Seaborn: statistical data visualization. J Open Source Softw 6:3021. https://doi.org/10.21105/joss.03021

Article  Google Scholar 

Schrödinger L The PyMOL Molecular Graphics System, Version~1.8

Kabsch W (2010) XDS. Acta Crystallogr Sect D Biol Crystallogr 66:125–132. https://doi.org/10.1107/s0907444909047337

CAS  Article  Google Scholar 

McCoy AJ, Grosse-Kunstleve RW, Adams PD et al (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674. https://doi.org/10.1107/s0021889807021206

CAS  Article  PubMed  PubMed Central  Google Scholar 

Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of coot. Acta Crystallogr Sect D Biol Crystallogr 66:486–501. https://doi.org/10.1107/s0907444910007493

CAS  Article  Google Scholar 

Murshudov GN, Skubák P, Lebedev AA et al (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr Sect D Biol Crystallogr 67:355–367. https://doi.org/10.1107/s0907444911001314

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif