Quantification of six types of cytokinins: Integration of an ultra-performance liquid chromatographic-electrospray tandem mass spectrometric method with antibody based immunoaffinity columns equally recognizing cytokinins in free base and nucleoside forms

Cytokinins (CTKs) exist in various types in plants. The accurate quantification of free base and nucleoside types of cytokinins are helpful for better understanding their physiological role. In the present study, antibodies against trans-zeatin riboside (tZR) and N6-isopentenyladenine riboside (iPR) antibodies with equal recognition to free base and nucleoside cytokinins were developed. The cross-reactivity of tZR mAb 3G101G7 with tZR, trans-zeatin (tZ), dihydrozeatin riboside (DHZR), dihydrozeatin (DHZ), iPR, and N6-isopentenyladenine (iP) was 100.0%, 95.7%, 19.1%, 18.0%, 1.1%, and 0.7%, and that of iPR mAb 5C82F1 with above-mentioned 6 types of cytokinins was 1.5%, 1.4%, 5.7%, 3.1%, 100.0% and 92.6%, respectively. The obtained antibodies were used to prepare two immunoaffinity columns (IAC). The elution efficiencies of tZR 3G101G7-IAC for tZ and tZR, DHZ and DHZR and of iPR 5C82F1-IAC for iP and iPR were almost no difference with the same loading amount on their corresponding IACs. Subsequently, six types of cytokinins in mepiquat chloride (MC)-treated cotton (Gossypium hirsutum L.) roots were determined by IACs combined with ultra-performance liquid chromatography-electrospray tandem mass spectrometry (UPLC-ESI-MS/MS). The contents of tZR, iPR and DHZR were increased by 9.3∼38.5%, 6.6∼23.5%, and 30.1∼110.0%, respectively, whereas those of tZ and iP were reduced by 5.3∼20.0% and 27.7∼32.1%, respectively. The decreased tZ and iP levels led to the ratio of auxin-to-active cytokinins increase to promote lateral root initiation in MC-treated cotton seeding. Integration of the IACs equally recognizing cytokinins in their free base and nucleoside forms with UPLC-ESI-MS/MS can accurately quantify different cytokinins in plant tissues.

留言 (0)

沒有登入
gif