Discussing the final size and shape of the reconstructed tissues in tissue engineering

McClelland R, et al. 7—tissue engineering. In: Enderle JD, Blanchard SM, Bronzino JD, editors., et al., Introduction to biomedical engineering. 2nd ed. Boston: Academic Press; 2005. p. 313–402.

Chapter  Google Scholar 

Ramos T, Moroni L. Tissue engineering and regenerative medicine 2019: the role of biofabrication—a year in review. Tissue Eng Part C Methods. 2019;26:91–106.

Article  Google Scholar 

Sun AR, et al. Cartilage tissue engineering for obesity-induced osteoarthritis: physiology, challenges, and future prospects. J Orthopaed Transl. 2020. https://doi.org/10.1016/j.jot.2020.07.004.

Article  Google Scholar 

Dzobo K, et al. Advances in regenerative medicine and tissue engineering: innovation and transformation of medicine. Stem Cells Int. 2018;2018:1–24.

Article  CAS  Google Scholar 

Edgar L, et al. Heterogeneity of scaffold biomaterials in tissue engineering. Materials. 2016;9:332.

PubMed Central  Article  CAS  Google Scholar 

Ma PX. Scaffolds for tissue fabrication. Mater Today. 2004;7:30–40.

CAS  Article  Google Scholar 

Vacanti JP, Vacanti CA. Chapter 1—the history and scope of tissue engineering. In: Lanza R, Langer R, Vacanti J, editors. Principles of tissue engineering. 4th ed. Boston: Academic Press; 2014. p. 3–8.

Chapter  Google Scholar 

Esmaeili J, et al. Integration of microbubbles with biomaterials in tissue engineering for pharmaceutical purposes. Heliyon. 2020;6:e04189.

PubMed  PubMed Central  Article  Google Scholar 

Biswal T. Biopolymers for tissue engineering applications: a review. Mater Today Proc. 2021;41:397–402.

Song HHG, et al. Vascular tissue engineering: progress, challenges, and clinical promise. Cell Stem Cell. 2018;22:340–54.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Swift MR, Weinstein BM. Arterial–venous specification during development. Circ Res. 2009;104:576–88.

CAS  PubMed  Article  Google Scholar 

Tatara AM, Kontoyiannis DP, Mikos AG. Drug delivery and tissue engineering to promote wound healing in the immunocompromised host: current challenges and future directions. Adv Drug Deliv Rev. 2018;129:319–29.

CAS  PubMed  Article  Google Scholar 

Tabata Y. Biomaterial technology for tissue engineering applications. J R Soc Interface. 2009;6:S311–24.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Eltom A, Zhong G, Muhammad A. Scaffold techniques and designs in tissue engineering functions and purposes: a review. Adv Mater Sci Eng. 2019;2019:3429527.

Article  CAS  Google Scholar 

Ikada Y. Challenges in tissue engineering. J R Soc Interface. 2006;3:589–601.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hellman KB. Challenges in tissue engineering and regenerative medicine product commercialization: building an industry. Tissue Eng Part A. 2011;17:1–3.

PubMed  Article  Google Scholar 

Rekow D. Informatics challenges in tissue engineering and biomaterials. Adv Dent Res. 2003;17:49–54.

CAS  PubMed  Article  Google Scholar 

Cobham AE, Mirth CK. The development of body and organ shape. BMC Zool. 2020;5:14.

Article  Google Scholar 

Thorne CH, Wilkes G. Ear deformities, otoplasty, and ear reconstruction. Plast Reconstr Surg. 2012;129:701e-e716.

CAS  PubMed  Article  Google Scholar 

Siemionow M, Sonmez E. Face as an organ. Ann Plast Surg. 2008;61:345–52.

CAS  PubMed  Article  Google Scholar 

Deo KA, et al. Bioprinting 101: design, fabrication, and evaluation of cell-laden 3D bioprinted scaffolds. Tissue Eng Part A. 2020;26:318–38.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Matai I, et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226: 119536.

CAS  PubMed  Article  Google Scholar 

Rezaei FS, et al. 3D printed chitosan/polycaprolactone scaffold for lung tissue engineering: hope to be useful for COVID-19 studies. RSC Adv. 2021;11:19508–20.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ramiah P, et al. Hydrogel-based bioinks for 3D bioprinting in tissue regeneration. Front Mater. 2020. https://doi.org/10.3389/fmats.2020.00076.

Article  Google Scholar 

Bian L. Functional hydrogel bioink, a key challenge of 3D cellular bioprinting. APL Bioeng. 2020;4: 030401.

PubMed  PubMed Central  Article  Google Scholar 

Fang Q, et al. In vitro and in vivo research on using Antheraea pernyi silk fibroin as tissue engineering tendon scaffolds. Mater Sci Eng C. 2009;29:1527–34.

CAS  Article  Google Scholar 

Cervantes T, et al. Design of composite scaffolds and three-dimensional shape analysis for tissue-engineered ear. J R Soc Interface R Soc. 2013;10:20130413.

Article  Google Scholar 

Mouriño V, et al. Enhancing biological activity of bioactive glass scaffolds by inorganic ion delivery for bone tissue engineering. Curr Opin Biomed Eng. 2019;10:23–34.

Article  Google Scholar 

Gurumurthy B, Janorkar AV. Improvements In mechanical properties of collagen-based scaffolds for tissue engineering. Curr Opin Biomed Eng. 2020;17:100253.

Article  CAS  Google Scholar 

Persson M, et al. Osteogenic differentiation of human mesenchymal stem cells in a 3D woven scaffold. Sci Rep. 2018;8:10457–10457.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Dhivya S, et al. Proliferation and differentiation of mesenchymal stem cells on scaffolds containing chitosan, calcium polyphosphate and pigeonite for bone tissue engineering. Cell Prolif. 2018;51: e12408.

Article  CAS  Google Scholar 

Wolpert L. One hundred years of positional information. Trends Genet. 1996;12:359–64.

CAS  PubMed  Article  Google Scholar 

Pina S, et al. Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials. 2019;12:1824.

CAS  PubMed Central  Article  Google Scholar 

Deng Y, et al. Bioinspired and osteopromotive polydopamine nanoparticle-incorporated fibrous membranes for robust bone regeneration. NPG Asia Mater. 2019;11:39.

CAS  Article  Google Scholar 

Wu Z, Guan K-L. Hippo signaling in embryogenesis and development. Trends Biochem Sci. 2021;46:51–63.

CAS  PubMed  Article  Google Scholar 

Aihara A, et al. Small molecule LATS kinase inhibitors block the Hippo signaling pathway and promote cell growth under 3D culture conditions. J Biol Chem. 2022;298:101779.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Burrill DR, Silver PA. Making cellular memories. Cell. 2010;140:13–8.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Levin M. The biophysics of regenerative repair suggests new perspectives on biological causation. BioEssays. 2020;42:1900146.

Article  Google Scholar 

Mekler L. Mechanism of biological memory. Nature. 1967;215:481–4.

CAS  PubMed  Article  Google Scholar 

Dudas M, et al. Memory encoded throughout our bodies: molecular and cellular basis of tissue regeneration. Pediatr Res. 2008;63:502–12.

PubMed  Article  Google Scholar 

Li J, Chen J, Kirsner R. Pathophysiology of acute wound healing. Clin Dermatol. 2007;25:9–18.

CAS  PubMed  Article  Google Scholar 

Pavlovic M, Mayfield J, Balint B. Tissue engineering triangle and its development. In: Handbook of medical and healthcare technologies. New York: Springer; 2013. p. 267–82.

Chapter  Google Scholar 

Stadelmann WK, Digenis AG, Tobin GR. Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg. 1998;176:26S-38S.

CAS  PubMed  Article  Google Scholar 

Kusuhara H, et al. Tissue engineering a model for the human ear: assessment of size, shape, morphology, and gene expression following seeding of different chondrocytes. Wound Repair Regen. 2009;17:136–46.

PubMed  Article  Google Scholar 

Hassanzadeh P, Atyabi F, Dinarvand R. Tissue engineering: still facing a long way ahead. J Control Release. 2018;279:181–97.

CAS  PubMed  Article  Google Scholar 

Jia L, et al. Regeneration of human-ear-shaped cartilage with acellular cartilage matrix-based biomimetic scaffolds. Appl Mater Today. 2020;20: 100639.

留言 (0)

沒有登入
gif