Response of soil microecology to different cropping practice under Bupleurum chinense cultivation

Jia R, Gu Z, He Q, Du J, Cao L, Jeney G, et al. Anti-oxidative, anti-inflammatory and hepatoprotective effects of radix bupleuri extract against oxidative damage in tilapia (Oreochromis niloticus) via Nrf2 and TLRs signaling pathway. Fish Shellfish Immunol. 2019;93:395–405.

CAS  PubMed  Article  Google Scholar 

Wang YX, Du Y, Liu XF, et al., et al. A hepatoprotection study of radix bupleuri on acetaminophen-induced liver injury based on CYP450 inhibition. Chin. J Nat Med. 2019;17:517–24.

CAS  Google Scholar 

Feng HC, Wang CM, Tang MZ, Wu XJ, Zhou ZC, Wei MD, et al. Antidepressant effect of total saponins of radix bupleuri and the underlying mechanism on a mouse model of depression. J Biol Regul Homeost Agents. 2020;34:1097–103.

CAS  PubMed  Google Scholar 

Song X, Ren T, Zheng Z, Lu T, Wang Z, Du F, et al. Anti-tumor and immunomodulatory activities induced by an alkali-extracted polysaccharide BCAP-1 from Bupleurum chinense via NF-κB signaling pathway. Int J Biol Macromol. 2017;95:357–62.

CAS  PubMed  Article  Google Scholar 

Cheng XQ, Li H, Yue XL, Xie JY, Zhang YY, Di HY, et al. Macrophage immunomodulatory activity of the polysaccharides from the roots of Bupleurum smithii var. parvifolium. J Ethnopharmacol. 2010;130:363–8.

CAS  PubMed  Article  Google Scholar 

Yuan B, Yang R, Ma Y, Zhou S, Zhang X, Liu Y. A systematic review of the active saikosaponins and extracts isolated from radix bupleuri and their applications. Pharm Biol. 2017;55:620–35.

CAS  PubMed  Article  Google Scholar 

Feng Y, Weng H, Ling L, Zeng T, Zhang Y, Chen D, et al. Modulating the gut microbiota and inflammation is involved in the effect of Bupleurum polysaccharides against diabetic nephropathy in mice. Int J Biol Macromol. 2019;132:1001–11.

CAS  PubMed  Article  Google Scholar 

Li X, Jia Y, Song A, Chen X, Bi K. Analysis of the essential oil from radix bupleuri using capillary gas chromatography. Yakugaku Zasshi. 2005;125:815–9.

CAS  PubMed  Article  Google Scholar 

Yang LL, Yang L, Yang X, Zhang T, Lan YM, Zhao Y, et al. Drought stress induces biosynthesis of flavonoids in leaves and saikosaponins in roots of Bupleurum chinense DC. Phytochemistry. 2020;177:112434.

CAS  PubMed  Article  Google Scholar 

Jiang H, Yang L, Hou A, Zhang J, Wang S, Man W, et al. Botany, traditional uses, phytochemistry, analytical methods, processing, pharmacology and pharmacokinetics of bupleuri radix: a systematic review. Biomed Pharmacother. 2020;131:110679.

CAS  PubMed  Article  Google Scholar 

Yang L, Zhao Y, Zhang Q, Cheng L, Han M, Ren Y, et al. Effects of drought-re-watering-drought on the photosynthesis physiology and secondary metabolite production of Bupleurum chinense DC. Plant Cell Rep. 2019;38:1181–97.

CAS  PubMed  Article  Google Scholar 

Tong AZ, Liu W, Liu Q, Xia GQ, Zhu JY. Diversity and composition of the Panax ginseng rhizosphere microbiome in various cultivation modes and ages. BMC Microbiol. 2021;21:18.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhang J, Fan S, Qin J, Dai J, Zhao F, Gao L, et al. Changes in the microbiome in the soil of an American ginseng continuous plantation. Front Plant Sci. 2020;11:572199.

PubMed  PubMed Central  Article  Google Scholar 

Lei H, Liu A, Hou Q, Zhao Q, Guo J, Wang Z. Diversity patterns of soil microbial communities in the Sophora flavescens rhizosphere in response to continuous monocropping. BMC Microbiol. 2020;20:1427–41.

Article  CAS  Google Scholar 

Wang ZG, Jin X, Bao XG, Li XF, Zhao JH, Sun JH, et al. Intercropping enhances productivity and maintains the most soil fertility properties relative to sole cropping. PLoS One. 2014;9:e113984.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Fernández-Aparicio M, Amri M, Kharrat M, Rubiales D. Intercropping reduces Mycosphaerella pinodes severity and delays upward progress on the pea plant. Crop Prot. 2020;297:744–50.

Google Scholar 

Zeng J, Liu J, Lu C, Ou X, Luo K, Li C, et al. Intercropping with turmeric or ginger reduce the continuous cropping obstacles that affect Pogostemon cablin (patchouli). Front Microbiol. 2020;11:579719.

PubMed  PubMed Central  Article  Google Scholar 

Peralta AL, Sun YM, McDaniel MD, Lennon JT. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere. 2018;9:e02235.

Article  Google Scholar 

He Z, Chen H, Liang L, Dong J, Liang Z, Zhao L. Alteration of crop rotation in continuous Pinellia ternate cropping soils profiled via fungal ITS amplicon sequencing. Lett Appl Microbiol. 2019;686:522–9.

Article  CAS  Google Scholar 

Li C, Chen G, Zhang J, Zhu P, Bai X, Hou Y, et al. The comprehensive changes in soil properties are continuous cropping obstacles associated with American ginseng (Panax quinquefolius) cultivation. Sci Rep. 2021;11:5068.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yao Y, Yao X, An L, Bai Y, Xie D, Wu K. Rhizosphere bacterial community response to continuous cropping of Tibetan barley. Front Microbiol. 2020;11:551444.

PubMed  PubMed Central  Article  Google Scholar 

Huang W, Sun D, Fu J, Zhao H, Wang R, An Y. Effects of continuous sugar beet cropping on rhizospheric microbial communities. Genes. 2019;11:13.

PubMed Central  Article  CAS  Google Scholar 

Qu B, Liu Y, Sun X, Li S, Wang X, Xiong K, et al. Effect of various mulches on soil physico-chemical properties and tree growth (Sophora japonica) in urban tree pits. PLoS One. 2019;2018(14):e0210777.

Article  CAS  Google Scholar 

Xing S, Wang J, Zhou Y, Bloszies SA, Tu C, Hu S. Effects of NH4+ −N/NO3- -N ratios on photosynthetic characteristics, dry matter yield and nitrate concentration of spinach. Exp Agric. 2015;51:151e160.

Article  Google Scholar 

Zhang WW, Wang C, Xue R, Wang LJ. Effects of salinity on the soil microbial community and soil fertility. J Integr Agric. 2019;18:1360–8.

CAS  Article  Google Scholar 

Li T, Liu T, Zheng C, Kang C, Yang Z, Yao X, et al. Changes in soil bacterial community structure as a result of incorporation of Brassica plants compared with continuous planting eggplant and chemical disinfection in greenhouses. PLoS One. 2017;12:e0173923.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Jiang YJ, Liang YT, Li CM, Wang F, Sui YY, Su YN, et al. Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia. Soil Biol Biochem. 2016;95:250–61.

CAS  Article  Google Scholar 

Liu X, Herbert S, Hashemi A, Zhang X, Ding G. Effects of agricultural management on soil organic matter and carbon transformation - a review. Plant Soil Environ. 2006;52:531–43.

CAS  Article  Google Scholar 

Nayyar A, Hamel C, Lafond G, Gossen BD, Hanson K, Germida J. Soil microbial quality associated with yield reduction in continuous-pea. Appl Soil Ecol. 2009;43:115–21.

Article  Google Scholar 

Lyu J, Jin L, Jin N, Xie J, Xiao X, Hu L, et al. Effects of different vegetable rotations on fungal community structure in continuous tomato cropping matrix in greenhouse. Front Microbiol. 2020;11:829.

PubMed  PubMed Central  Article  Google Scholar 

Ge Y, Zhang JB, Zhang LM, Yang M, He JZ. Long-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in northern China. J Soils Sediments. 2008;8(1):43–50.

CAS  Article  Google Scholar 

Chen QL, Ding J, Zhu YG, He JZ, Hu HW. Soil bacterial taxonomic diversity is critical to maintaining the plant productivity. Environ Int. 2020;140:105766.

PubMed  Article  Google Scholar 

Xiong W, Zhao Q, Xue C, Xun W, Zhao J, Wu H, et al. Comparison of fungal community in black pepper-vanilla and vanilla monoculture systems associated with vanilla Fusarium wilt disease. Front Microbiol. 2016;7:117.

PubMed  PubMed Central  Google Scholar 

van Elsas JD, Chiurazzi M, Mallon CA, Elhottova D, Kristufek V, Salles JF. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci U S A. 2012;109:1159–64.

PubMed  PubMed Central  Article  Google Scholar 

Song X, Pan Y, Li L, Wu X, Wang Y. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. Continuous cropping fields. PLoS One. 2018;13:e0193811.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Li N, Gao D, Zhou X, Chen S, Li C, Wu F. Intercropping with potato-onion enhanced the soil microbial diversity of tomato. Microorganisms. 2020;8:834.

CAS  PubMed Central  Article  Google Scholar 

Lupwayi NZ, Rice WA, Clayton GW. Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol Biochem. 1998;30:1733–41.

CAS  Article  Google Scholar 

Bell TH, Yergeau E, Maynard C, Juck D, Whyte LG, Greer CW. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance. ISME J. 2018;7:1200–10.

Article  CAS  Google Scholar 

Pathan SI, Scibetta S, Grassi C, Pietramellara G, Orlandini S, Ceccherini MT, et al. Response of soil bacterial community to application of organic and inorganic phosphate based fertilizers under vicia faba L. cultivation at two different phenological stages. Sustainability. 2020;12:9706.

CAS  Article 

留言 (0)

沒有登入
gif