Active bone marrow S-values for the low-energy electron emitter terbium-161 compared to S-values for lutetium-177 and yttrium-90

Sabet A, Ezziddin K, Pape U-F, et al. Long-term hematotoxicity after peptide receptor radionuclide therapy with 177Lu-octreotate. J Nucl Med. 2013;54:1857–61.

CAS  PubMed  Article  Google Scholar 

Bodei L, Cremonesi M, Ferrari M, et al. Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90 Y-DOTATOC and 177 Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging. 2008;35:1847–56.

CAS  PubMed  Article  Google Scholar 

Bodei L, Cremonesi M, Grana CM, et al. Peptide receptor radionuclide therapy with 177 Lu-DOTATATE: the IEO phase I-II study. Eur J Nucl Med Mol Imaging. 2011;38:2125–35.

CAS  PubMed  Article  Google Scholar 

Marin G, Vanderlinden B, Karfis I, et al. A dosimetry procedure for organs-at-risk in 177Lu peptide receptor radionuclide therapy of patients with neuroendocrine tumours. Physica Med. 2018;56:41–9.

Article  Google Scholar 

Svensson J, Rydén T, Hagmarker L, Hemmingsson J, Wängberg B, Bernhardt P. A novel planar image-based method for bone marrow dosimetry in 177 Lu-DOTATATE treatment correlates with haematological toxicity. EJNMMI physics. 2016;3:21.

PubMed  PubMed Central  Article  Google Scholar 

Hagmarker L, Svensson J, Rydén T, et al. Bone marrow absorbed doses and correlations with hematologic response during 177Lu-DOTATATE treatments are influenced by image-based dosimetry method and presence of skeletal metastases. J Nucl Med. 2019;60:1406–13.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bodei L, Kidd M, Paganelli G, et al. Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors. Eur J Nucl Med Mol Imaging. 2015;42:5–19.

CAS  PubMed  Article  Google Scholar 

Lehenberger S, Barkhausen C, Cohrs S, et al. The low-energy β− and electron emitter 161Tb as an alternative to 177Lu for targeted radionuclide therapy. Nucl Med Biol. 2011;38:917–24.

CAS  PubMed  Article  Google Scholar 

Eckerman K, Endo A, ICRP Publication 107. Nuclear decay data for dosimetric calculations. Ann ICRP. 2008;38:7–96.

CAS  PubMed  Google Scholar 

Alcocer-Ávila ME, Ferreira A, Quinto MA, Morgat C, Hindié E, Champion C. Radiation doses from 161 Tb and 177 Lu in single tumour cells and micrometastases. EJNMMI physics. 2020;7:1–9.

Article  Google Scholar 

Champion C, Quinto MA, Morgat C, Zanotti-Fregonara P, Hindié E. Comparison between three promising ß-emitting radionuclides, 67Cu, 47Sc and 161Tb, with emphasis on doses delivered to minimal residual disease. Theranostics. 2016;6:1611.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hindié E, Zanotti-Fregonara P, Quinto MA, Morgat C, Champion C. Dose deposits from 90Y, 177Lu, 111In, and 161Tb in micrometastases of various sizes: implications for radiopharmaceutical therapy. J Nucl Med. 2016;57:759–64.

PubMed  Article  Google Scholar 

Bernhardt P, Svensson J, Hemmingsson J, et al. Dosimetric analysis of the short-ranged particle emitter 161Tb for radionuclide therapy of metastatic prostate cancer. Cancers. 2021;13:2011.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bernhardt P, Benjegård SA, Kölby L, et al. Dosimetric comparison of radionuclides for therapy of somatostatin receptor-expressing tumors. Int J Radiat Oncol Biol Phys. 2001;51:514–24.

CAS  PubMed  Article  Google Scholar 

Borgna F, Barritt P, Grundler PV, et al. Simultaneous visualization of 161Tb-and 177Lu-labeled somatostatin analogues using dual-Isotope SPECT imaging. Pharmaceutics. 2021;13:536.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Müller C, Reber J, Haller S, et al. Direct in vitro and in vivo comparison of 161 Tb and 177 Lu using a tumour-targeting folate conjugate. Eur J Nucl Med Mol Imaging. 2014;41:476–85.

PubMed  Article  Google Scholar 

Müller C, Umbricht CA, Gracheva N, et al. Terbium-161 for PSMA-targeted radionuclide therapy of prostate cancer. Eur J Nucl Med Mol Imaging. 2019;46:1919–30.

PubMed  PubMed Central  Article  Google Scholar 

Grünberg J, Lindenblatt D, Dorrer H, et al. Anti-L1CAM radioimmunotherapy is more effective with the radiolanthanide terbium-161 compared to lutetium-177 in an ovarian cancer model. Eur J Nucl Med Mol Imaging. 2014;41:1907–15.

PubMed  Article  Google Scholar 

Baum RP, Singh A, Kulkarni HR, et al. First-in-human application of terbium-161: a feasibility study using (161)Tb-DOTATOC. J Nucl Med. 2021;62:1391.

PubMed  PubMed Central  Article  Google Scholar 

Garske-Román U, Sandström M, Baron KF, et al. Prospective observational study of 177 Lu-DOTA-octreotate therapy in 200 patients with advanced metastasized neuroendocrine tumours (NETs): feasibility and impact of a dosimetry-guided study protocol on outcome and toxicity. Eur J Nucl Med Mol Imaging. 2018;45:970–88.

PubMed  PubMed Central  Article  Google Scholar 

Griffith JF. Bone marrow changes in osteoporosis. In: Guglielmi G, editor. Osteoporosis and bone densitometry measurements. Berlin, Heidelberg: Springer, Berlin Heidelberg; 2013. p. 69–85.

Chapter  Google Scholar 

Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.

PubMed  Google Scholar 

Hindorf C, Glatting G, Chiesa C, Lindén O, Flux G. EANM dosimetry committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging. 2010;37:1238–50.

PubMed  Article  Google Scholar 

Del Prete M, Buteau F-A, Beauregard J-M. Personalized 177 Lu-octreotate peptide receptor radionuclide therapy of neuroendocrine tumours: a simulation study. Eur J Nucl Med Mol Imaging. 2017;44:1490–500.

PubMed  Article  Google Scholar 

Spiers F. A review of the theoretical and experimental methods of determining radiation dose in bone. Br J Radiol. 1966;39:216–21.

CAS  PubMed  Article  Google Scholar 

Shah AP. Reference skeletal dosimetry model for an adult male radionuclide therapy patient based on 3D imaging and paired-image radiation transport. University of Florida Gainesville; 2004.

Google Scholar 

Kramer R, Khoury H, Vieira J, Kawrakow I. Skeletal dosimetry in the MAX06 and the FAX06 phantoms for external exposure to photons based on vertebral 3D-microCT images. Phys Med Biol. 2006;51:6265.

CAS  PubMed  Article  Google Scholar 

Hough M, Johnson P, Rajon D, Jokisch D, Lee C, Bolch W. An image-based skeletal dosimetry model for the ICRP reference adult male—internal electron sources. Phys Med Biol. 2011;56:2309.

PubMed  PubMed Central  Article  Google Scholar 

O’Reilly SE, DeWeese LS, Maynard MR, et al. An image-based skeletal dosimetry model for the ICRP reference adult female—internal electron sources. Phys Med Biol. 2016;61:8794.

PubMed  PubMed Central  Article  Google Scholar 

Geyer AM, Schwarz BC, O’Reilly SE, Hobbs RF, Sgouros G, Bolch WE. Depth-dependent concentrations of hematopoietic stem cells in the adult skeleton: implications for active marrow dosimetry. Med Phys. 2017;44:747–61.

CAS  PubMed  Article  Google Scholar 

ICRP. ICRP publication 70: Basic anatomical & physiological data for use in radiological protection: the skeleton, vol. 70. Elsevier Health Sciences; 1996.

Google Scholar 

Lee C, Lodwick D, Hurtado J, Pafundi D, Williams JL, Bolch WE. The UF family of reference hybrid phantoms for computational radiation dosimetry. Phys Med Biol. 2009;55:339.

PubMed  PubMed Central  Article  Google Scholar 

Pafundi D, Rajon D, Jokisch D, Lee C, Bolch W. An image-based skeletal dosimetry model for the ICRP reference newborn—internal electron sources. Phys Med Biol. 2010;55:1785.

PubMed  Article  Google Scholar 

Salvat F. The PENELOPE code system. Specific features and recent improvements. In: Paper presented at: SNA+ MC 2013-joint international conference on supercomputing in nuclear applications+ Monte Carlo, 2014.

García-Toraño E, Peyres V, Salvat F. PenNuc: Monte Carlo simulation of the decay of radionuclides. Comput Phys Commun. 2019;245:106849.

Article  Google Scholar 

Gao D, Chang Q, Liu C, et al. Fundamental cryobiology of human hematopoietic progenitor cells I: osmotic characteristics and volume distribution. Cryobiology. 1998;36:40–8.

CAS  PubMed  Article  Google Scholar 

Vinjamuri S, Gilbert T, Banks M, et al. Peptide receptor radionuclide therapy with 90 Y-DOTATATE/90 Y-DOTATOC in patients with progressive metastatic neuroendocrine tumours: assessment of response, survival and toxicity. Br J Cancer. 2013;108:1440–8.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bourke VA, Watchman CJ, Reith JD, Jorgensen ML, Dieudonnè A, Bolch WE. Spatial gradients of blood vessels and hematopoietic stem and progenitor cells within the marrow cavities of the human skeleton. Blood J Am Soc Hematol. 2009;114:4077–80.

CAS  Google Scholar 

Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values: ICRP publication 89. Ann ICRP. 2002;32:1–277.

Article  Google Scholar 

Forrer F, Krenning EP, Kooij PP, et al. Bone marrow dosimetry in peptide receptor radionuclide therapy with [177 Lu-DOTA 0, Tyr 3] octreotate. Eur J Nucl Med Mol Imaging. 2009;36:1138–46.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sea B. Patient-specific dosimetry of 177Lu-dotatate peptide receptor radionuclide therapy with high activities. Eur J Nucl Med Mol Imaging. 2018;45:1–844.

Google Scholar 

Ferrer L, Kraeber-Bodéré F, Bodet-Milin C, et al. Three methods assessing red marrow dosimetry in lymphoma patients treated with radioimmunotherapy. Cancer. 2010;116:1093–100.

CAS

留言 (0)

沒有登入
gif