Metabolism and memory: α-synuclein level in children with obesity and children with type 1 diabetes; relation to glucotoxicity, lipotoxicity and executive functions

Stillman C, Andrea W, Anna M, Gianaros P, Erickson K. Body–Brain Connections: The Effects of Obesity and Behavioral Interventions on Neurocognitive Aging. Front Aging Neurosci. 2017; 9. https://doi.org/10.3389/fnagi.2017.00115.

Kang SY, Kim YJ, Jang W, Son KY, Park HS, Kim YS. Body mass index trajectories and the risk for Alzheimer’s disease among older adults. Sci Rep. 2021; 11. https://doi.org/10.1038/s41598-021-82593-7.

Edwards III G, Gamez N, Escobedo Jr. G, Calderon O, Moreno-Gonzalez I. Modifiable Risk Factors for Alzheimer’s Disease. Front Aging Neurosci. 2019; 11. https://doi.org/10.3389/fnagi.2019.00146.

Newby D, Garfield V. Understanding the inter-relationships of type 2 diabetes and hypertension with brain and cognitive health: A UK Biobank study. Diabetes Obes Metab. 2022;24:938–47. https://doi.org/10.1111/dom.14658.

Article  PubMed  PubMed Central  Google Scholar 

Chaytor NS, Barbosa-Leiker C, Ryan CM, Germine LT, Hirsch IB, Weinstock RS. Clinically significant cognitive impairment in older adults with type 1 diabetes. J Diabetes Complications. 2019;33:91–97. https://doi.org/10.1016/j.jdiacomp.2018.04.003.

Article  PubMed  Google Scholar 

Lacy ME, Gilsanz P, Karter AJ, Quesenberry CP, Pletcher MJ, Whitmer RA. Long-term Glycemic Control and Dementia Risk in Type 1 Diabetes. Diabetes Care. 2018;41:2339–45. https://doi.org/10.2337/dc18-0073.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Silverman JM, Schmeidler J, Lee PG, Alexander NB, Beeri MS, Guerrero-Berroa E, et al. Associations of hemoglobin A1c with cognition reduced for long diabetes duration. Alzheimers Dement (NY). 2019;5:926–32. https://doi.org/10.1016/j.trci.2019.11.009.

Article  Google Scholar 

Sellbom KS, Gunstad J. Cognitive function and decline in obesity. J Alzheimers Dis. 2012;30:S89–S95.

Article  Google Scholar 

Ma Y, Ajnakina O, Steptoe A, Cadar D. Higher risk of dementia in English older individuals who are overweight or obese. Int J Epidemiol. 2020;49:1353–65. https://doi.org/10.1093/ije/dyaa099.

Article  PubMed  PubMed Central  Google Scholar 

Favieri F, Forte G, Casagrande M. The Executive Functions in Overweight and Obesity: A Systematic Review of Neuropsychological Cross-Sectional and Longitudinal. Studies Front Psychol. 2019;10:2126. https://doi.org/10.3389/fpsyg.2019.02126.

Article  PubMed  Google Scholar 

Horie NC, Serrao VT, Simon SS, Gascon M, Dos Santos AX, Zambone MA, et al. Cognitive effects of intentional weight loss in elderly obese individuals with mild cognitive impairment. J Clin Endocrinol Metab. 2016;101:1104–12.

CAS  Article  Google Scholar 

McNeilly AD, McCrimmon RJ. The Scylla and Charybdis of glucose control in childhood type 1 diabetes? Pediatr Diabetes. 2015;16:235–41.

CAS  Article  Google Scholar 

Tonoli C, Heyman E, Roelands B, Pattyn N, Buyse L, Piacentini M, et al. Type 1 diabetes-associated cognitive decline: A meta-analysis and update of the current literature. J Diabetes. 2014;6:499–513. https://doi.org/10.1111/1753-0407.12193.

Article  PubMed  Google Scholar 

Lin A, Northam EA, Werther GA, Cameron FJ. Risk factors for decline in IQ in youth with type 1 diabetes over the 12 years from diagnosis/illness onset. Diabetes Care. 2015;38:236–42.

Article  Google Scholar 

Eichen DM, Appleton-Knapp S, Boutelle KN. Childhood Obesity and Cognitive Function. In: Freemark M (eds) Pediatric Obesity. Contemporary Endocrinology. Humana Press, Cham, 2018. https://doi.org/10.1007/978-3-319-68192-4_31

Torrijos-Niño C, Martínez-Vizcaíno V, Pardo-Guijarro MJ, García-Prieto JC, Arias-Palencia NM, Sánchez-López M. Physical fitness, obesity, and academic achievement in school children. J Pedatr. 2014;165:104–9. https://doi.org/10.1016/j.jpeds.2014.02.041.

Article  Google Scholar 

LeBlanc MM, Martin CK, Han H, Newton R Jr, Sothern M, Webber LS, et al. Adiposity and physical activity are not related to academic achievement in school-aged children. J Dev Behav Pediatr. 2012;33:486–94.

Article  Google Scholar 

Kamijo K, Khan NA, Pontifex MB, Scudder MR, Drollette ES, Raine LB, et al. The relation of adiposity to cognitive control and scholastic achievement in preadolescent children. Obesity. 2012;20:2406–11.

Article  Google Scholar 

Miller AL, Lee HJ, Lumeng JC. Obesity-associated biomarkers and executive function in Children. Pediatric Research. 2015;77:143–7.

Article  Google Scholar 

Choi J, Kim SY, Kim H, Lim BC, Hwang H, Chae JH, et al. Serum α-synuclein and IL-1β are increased and correlated with measures of disease severity in children with epilepsy: potential prognostic biomarkers? BMC Neurology. 2020;20:85. https://doi.org/10.1186/s12883-020-01662-y.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Visanji NP, Lang AE, Kovacs GG. Beyond the synucleinopathies: alpha synuclein as a driving force in neurodegenerative comorbidities. Transl Neurodegener. 2019;85:177–89. https://doi.org/10.1186/s40035-019-0172-x.

CAS  Article  Google Scholar 

Khoshi A, Goodarzi G, Mohammadi R, Arezumand R, Moghbeli M, Najariyan M. Reducing effect of insulin resistance on alpha synuclein gene expression in skeletal muscle. Diabetol Metab Syndr. 2019;11:99. https://doi.org/10.1186/s13098-019-0499-6.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Świderska E, Strycharz J, Wróblewski A, Szemraj J, Drzewoski J, Śliwińska A. Role of PI3K/AKT pathway in insulin-mediated glucose uptake. In Blood Glucose Levels. IntechOpen. 2018. https://doi.org/10.5772/intechopen.80402.

Rotermund C, Truckenmüller FM, Schell H, Kahle PJ. Diet-induced obesity accelerates the onset of terminal phenotypes in α-synuclein transgenic mice. J Neurochem. 2014;131:848–58.

CAS  Article  Google Scholar 

Mayer-Davis E, Kahkoska A, Jefferies C, Dabelea D, Balde N, Gong C, et al. ISPAD Clinical Practice Consensus Guidelines 2018: Definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr Diabetes. 2018;19:7–19.

Article  Google Scholar 

El-Gilany A, El-Wehady A, El-Wasify M. Updating and validation of the socioeconomic status scale for health research in Egypt. Eastern Mediterranean Health J. 2012;18:962–8.

CAS  Article  Google Scholar 

World Health Organization. Department of Nutrition for Health and Development. WHO Child Growth Standards. Length/height-for-age, weight-for-age, weight-for-length, weight-for-height, and body mass index-for-age. Methods and Development. Acta Paediatr Suppl. 2006;450:76–85. https://doi.org/10.1111/j.1651-2227.2006.tb02378.x.

Schwandt P, Kelishadi R, Haas GM. First reference curves of waist circumference for German children in comparison to international values: the PEP Family Heart Study. World J Pediatr. 2008;4:259–66.

Article  Google Scholar 

Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch Dis Childhood. 1970;45:13–23.

CAS  Article  Google Scholar 

Flynn J, Kaelber D, Baker-Smith C, Blowey D, Carroll A, Daniels S, et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics. 2017;140:e20171904. https://doi.org/10.1542/peds.2017-1904.

Article  PubMed  Google Scholar 

Atabek ME, Pirgon O. Assessment of insulin sensitivity from measurements in fasting state and during an oral glucose tolerance test in obese children. J Pediatr Endocrinol Metabol. 2007;20:187–96.

CAS  Article  Google Scholar 

Epstein E, Osman J, Cohen H, Rajpathak S, Lewis O, Crandall J. Use of the Estimated Glucose Disposal Rate as a Measure of Insulin Resistance in an Urban Multiethnic Population With Type 1 Diabetes. Diabetes Care. 2013;36:2280–5. https://doi.org/10.2337/dc12-1693.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Köken Ö, Kara C, Yilmaz G, Aydın H. “Utility of estimated glucose disposal rate for predicting metabolic syndrome in children and adolescents with type-1 diabetes”. J Pediatr Endocrinol Metab. 2020;33:859–64. https://doi.org/10.1515/jpem-2020-0012.

Article  PubMed  Google Scholar 

Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.

CAS  Article  Google Scholar 

Laurent J, Swerdlik M, Ryburn M. Review of validity research on the Stanford–Binet intelligence scale: Fourth edition. Psychol Assess. 1992;4:102–12.

Article  Google Scholar 

Melika L. The Stanford Binet intelligence scale. Arabic Examiner’s handbook. 4th edn. Cairo: Dar El-Maref Publishing; 1998.

Google Scholar 

Barkley RA. Barkley Deficits in Executive Functioning Scale–Children andAdolescents (BDEFS-CA). Guilford Press; 2012. https://www.guilford.com/books/Barkley-Deficits-Executive-Functioning-Scale-Children-Adolescents-BDEFS/Russell-Barkley/9781462503940. Accessed 26 Feb 2018.

Abou El Wafa HE, Ghobashy SA, Hamza AM. A comparative study of executive functions among children with attention deficit and hyperactivity disorder and those with learning disabilities. Middle East Current Psychiatry. 2020; 27. https://doi.org/10.1186/s43045-020-00071-8.

Callisaya ML, Beare R, Moran C, Phan T, Wang W, Srikanth V. Type 2 diabetes mellitus, brain atrophy and cognitive decline in older people: a longitudinal study. Diabetologia. 2019;62:448–58. https://doi.org/10.1007/s00125-018-4778-9.

Article  PubMed  Google Scholar 

Andrew A, Anderson F, Lee S, Von Herrmann K, Havrda M. “Lifestyle Factors and Parkinson’s Disease Risk in a Rural New England Case-Control Study”, Parkinson’s Disease. 2021. https://doi.org/10.1155/2021/5541760.

Perez-Taboada I, Alberquilla S, Martin ED, Anand R, Vietti-Michelina S, Tebeka NN, et al. Diabetes causes dysfunctional dopamine neuro- transmission favoring nigrostriatal degeneration in mice. Mov Disord. 2020;35:1636–48.

CAS  Article  Google Scholar 

Renaud J, Bassareo V, Beaulieu J, Pinna A, Schlich M, Lavoie C, et al. Dopa- minergic neurodegeneration in a rat model of long-term hyperglycemia: preferential degeneration of the nigrostriatal motor pathway. Neurobiol Aging. 2018;69:117–28. 55

CAS  Article  Google Scholar 

Shalimova A, Graf B, Gasecki D, Wolf J, Sabisz A, Szurowska E, et al. Cogni- tive dysfunction in type 1 diabetes mellitus. J Clin Endocrinol Metab. 2019;104:2239–49.

Article  Google Scholar 

Gaudieri PA, Chen R, Greer TF, Holmes CS. Cognitive function in children with type 1 diabetes a meta-analysis. Diabetes Care. 2008;31:1892–7. pmid:18753668

Article  Google Scholar 

Nevo-Shenker M, Shalitin S. The impact of hypo- and hyperglycemia on cognition and brain development in young children with type 1 diabetes. Horm Res Paediatr. 2021;94:115–23. https://doi.org/10.1159/000517352.

CAS  Article  PubMed  Google Scholar 

Broadley MM, White MJ, Andrew B. A systematic review and meta-analysis of executive function performance in type 1 diabetes mellitus. Psychosom Med. 2017;79:684–96. pmid:28207612.

Article  Google Scholar 

McNally K, Rohan J, Pendley J, Delamater A, Drotar D. Executive functioning, treatment adherence, and glycemic control in children with type 1 diabetes. Diabetes Care. 2010;33:1159–62. https://doi.org/10.2337/dc09-2116.

Article  PubMed  PubMed Central  Google Scholar 

Liyanagamage D, Martinus RD. Role of mitochondrial stress protein HSP60 in diabetes-induced neuroinfammation. Mediators Infamm. 2020;2020:8073516.

Google Scholar 

Lv Y, Yuan L, Sun Y, Dou H, Su J, Hou Z, et al. Long-term hyperglycemia aggravates α-synuclein aggregation and dopaminergic neuronal loss in a Parkinson’s disease mouse model. Transl Neurodegeneration. 2022;11:14. https://doi.org/10.1186/s40035-022-00288-z.

CAS  Article  Google Scholar 

Meo SA, Altuwaym AA, Alfallaj RM, Alduraibi KA, Alhamoudi AM, Alghamdi SM, et al. Effect of Obesity on Cognitive Function among School Adolescents: A Cross-Sectional Study. Obes Facts. 2019;12:150–6.

留言 (0)

沒有登入
gif