Detection and discovery of plant viruses in soybean by metagenomic sequencing

Wilson RF. Soybean: market driven research needs. In: Stacey G, editor. Genet genomics soybean. New York, NY: Springer; 2008. p. 3–15. https://doi.org/10.1007/978-0-387-72299-3_1.

Chapter  Google Scholar 

Ghabrial SA, Pickard CM, Stuckey RE. Identification and distribution of virus diseases of soybean in Kentucky. Plant Dis Rep. 1977;61:690–4.

Google Scholar 

Harrison B, Steinlage TA, Domier LL, D’Arcy CJ. Incidence of Soybean dwarf virus and identification of potential vectors in Illinois. Plant Dis. 2005;89:28–32.

PubMed  Article  Google Scholar 

Giesler LJ, Ziems AD. Incidence of Alfalfa mosaic virus, Bean pod mottle virus, and Soybean mosaic virus in Nebraska Soybean fields. Plant Health Prog. 2006;7:37.

Article  Google Scholar 

Bradshaw JD, Rice ME, Hill JH. Evaluation of management strategies for bean leaf beetles (Coleoptera: Chrysomelidae) and bean pod mottle virus (Comoviridae) in soybean. J Econ Entomol. 2008;101:1211–27.

CAS  PubMed  Article  Google Scholar 

Hill JH, Whitham SA. Control of virus diseases in soybeans. Adv Virus Res. 2014;90:355–90.

PubMed  Article  Google Scholar 

Mueller D, Wise KA, Sisson AJ, Smith DL, Sikora EJ, Robertson AE, et al. A farmer’s guide to soybean diseases. Minnesota: The American Phytopathological Society; 2016.

Book  Google Scholar 

Allen TW, Bradley CA, Sisson AJ, Byamukama E, Chilvers MI, Coker CM, et al. Soybean yield loss estimates due to diseases in the United States and Ontario, Canada, from 2010 to 2014. Plant Health Prog. 2017;18:19–27.

Article  Google Scholar 

Anderson NR, Irizarry MD, Bloomingdale CA, Smith DL, Bradley CA, Delaney DP, et al. Effect of soybean vein necrosis on yield and seed quality of soybean. Can J Plant Pathol. 2017;39:334–41.

Article  Google Scholar 

Stuckey RE, Ghabrial SA, Reicosky DA. Increased incidence of Phomopsis sp. in seeds from soybeans infected with bean pod mottle virus [Glycine max, Phomopsis sojae]. Plant Dis. 1982;66:826.

Article  Google Scholar 

Hajimorad MR, Domier LL, Tolin SA, Whitham SA, Saghai Maroof MA. Soybean mosaic virus: a successful potyvirus with a wide distribution but restricted natural host range. Mol Plant Pathol. 2018;19:1563–79.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Maroof MAS, Tucker DM, Tolin SA. Genomics of viral-soybean interactions. In: Stacey G, editor. Genetics and genomics of soybean. New York: Springer; 2008. p. 293–319.

Chapter  Google Scholar 

Sanfaçon H, Wellink J, Le Gall O, Karasev A, van der Vlugt R, Wetzel T. Secoviridae: a proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus. Arch Virol. 2009;154:899–907. https://doi.org/10.1007/s00705-009-0367-z.

CAS  Article  PubMed  Google Scholar 

Hopkins JD, Mueller AJ. Effect of bean pod mottle virus on soybean yield. J Econ Entomol. 1984;77:943–7. https://doi.org/10.1093/jee/77.4.943.

Article  Google Scholar 

Zhou J, Kantartzi SK, Wen R-H, Newman M, Hajimorad MR, Rupe JC, et al. Molecular characterization of a new tospovirus infecting soybean. Virus Genes. 2011;43:289–95. https://doi.org/10.1007/s11262-011-0621-9.

CAS  Article  PubMed  Google Scholar 

Zhou J, Tzanetakis IE. Epidemiology of Soybean vein necrosis-associated virus. Phytopathology. 2013;103:966–71. https://doi.org/10.1094/PHYTO-12-12-0322-R.

CAS  Article  PubMed  Google Scholar 

Zhou J, Tzanetakis IE. Soybean vein necrosis virus: an emerging virus in North America. Virus Genes. 2019;55:12–21. https://doi.org/10.1007/s11262-018-1618-4.

CAS  Article  PubMed  Google Scholar 

Irizarry MD, Elmore MG, Batzer JC, Whitham SA, Mueller DS. Alternative hosts for soybean vein necrosis virus and feeding preferences of its vector soybean thrips. Plant Health Prog. 2018;19.

El-Wahab ASA. Molecular characterization and incidence of new tospovirus: Soybean Vein Necrosis Virus (SVNV) in Egypt. Braz J Biol. 2021;84:e246460.

PubMed  Article  Google Scholar 

Lim S, Lee Y-H, Igori D, Zhao F, Yoo RH, Lee S-H, et al. First report of peanut mottle virus infecting soybean in South Korea. Plant Dis. 2014;98:1285. https://doi.org/10.1094/PDIS-04-14-0356-PDN.

CAS  Article  PubMed  Google Scholar 

Campos RE, Bejerman N, Nome C, Laguna IG, Rodríguez PP. Bean yellow mosaic virus in soybean from Argentina. J Phytopathol. 2014;162:322–5. https://doi.org/10.1111/jph.12185.

Article  Google Scholar 

Zhou G-C, Wu X-Y, Zhang Y-M, Wu P, Wu X-Z, Liu L-W, et al. A genomic survey of thirty soybean-infecting bean common mosaic virus (BCMV) isolates from China pointed BCMV as a potential threat to soybean production. Virus Res. 2014;191:125–33.

CAS  PubMed  Article  Google Scholar 

Hollings M, Nariani TK. Some properties of clover yellow vein, a virus from Trifolium repens L. Ann Appl Biol. 1965;56:99–109. https://doi.org/10.1111/j.1744-7348.1965.tb01219.x.

Article  Google Scholar 

Shin J-C, Kim M-K, Kwak H-R, Choi H-S, Kim J-S, Park C-Y, et al. First Report of clover yellow vein virus on Glycine max in Korea. Plant Dis. 2014;98:1283.

PubMed  Article  Google Scholar 

Han J, Domier LL, Cassone BJ, Dorrance A, Qu F. Assessment of common soybean-infecting viruses in Ohio, USA, through multi-site sampling and high-throughput sequencing. Plant Health Prog. 2016;17:133–40. https://doi.org/10.1094/PHP-RS-16-0018.

Article  Google Scholar 

Abe J, Wang Y, Yamada T, Sato M, Ono T, Atsumi G, et al. Recessive resistance governed by a major quantitative trait locus restricts clover yellow vein virus in mechanically but not graft-inoculated cultivated soybeans. Mol Plant-Microbe Interact. 2019;32:1026–37. https://doi.org/10.1094/MPMI-12-18-0331-R.

CAS  Article  PubMed  Google Scholar 

Mehetre GT, Leo VV, Singh G, Sorokan A, Maksimov I, Yadav MK, et al. Current developments and challenges in plant viral diagnostics: a systematic review. Viruses. 2021;13:412.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Boonham N, Kreuze J, Winter S, van der Vlugt R, Bergervoet J, Tomlinson J, et al. Methods in virus diagnostics: from ELISA to next generation sequencing. Virus Res. 2014;186:20–31.

CAS  PubMed  Article  Google Scholar 

Massart S, Olmos A, Jijakli H, Candresse T. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Res. 2014;188:90–6.

CAS  PubMed  Article  Google Scholar 

Massart S, Candresse T, Gil J, Lacomme C, Predajna L, Ravnikar M, et al. A framework for the evaluation of biosecurity, commercial, regulatory, and scientific impacts of plant viruses and viroids identified by NGS technologies. Front Microbiol. 2017;2017:45. https://doi.org/10.3389/fmicb.2017.00045.

Article  Google Scholar 

Roossinck MJ. Deep sequencing for discovery and evolutionary analysis of plant viruses. Virus Res. 2017;239:82–6.

CAS  PubMed  Article  Google Scholar 

Jones S, Baizan-Edge A, MacFarlane S, Torrance L. Viral diagnostics in plants using next generation sequencing: computational analysis in practice. Front Plant Sci. 2017;2017:1770. https://doi.org/10.3389/fpls.2017.01770.

Article  Google Scholar 

Stewart LR, Teplier R, Todd JC, Jones MW, Cassone BJ, Wijeratne S, et al. Viruses in maize and johnsongrass in Southern Ohio. Phytopathology. 2014;104:1360–9. https://doi.org/10.1094/PHYTO-08-13-0221-R.

CAS  Article  PubMed  Google Scholar 

Eichmeier A, Komínková M, Komínek P, Baránek M. Comprehensive virus detection using next generation sequencing in grapevine vascular tissues of plants obtained from the wine regions of Bohemia and Moravia (Czech Republic). PLoS One. 2016;11:e0167966. https://doi.org/10.1371/journal.pone.0167966.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hadidi A, Flores R, Candresse T, Barba M. Next-generation sequencing and genome editing in plant virology. Front Microbiol. 2016;2016:1325. https://doi.org/10.3389/fmicb.2016.01325.

Article  Google Scholar 

Coetzee B, Freeborough M-J, Maree HJ, Celton J-M, Rees DJG, Burger JT. Deep sequencing analysis of viruses infecting grapevines: virome of a vineyard. Virology. 2010;400:157–63.

CAS  PubMed  Article  Google Scholar 

Jo Y, Kim S-M, Choi H, Yang JW, Lee BC, Cho WK. Sweet potato viromes in eight different geographical regions in Korea and two different cultivars. Sci Rep. 2020;10:2588. https://doi.org/10.1038/s41598-020-59518-x.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhang S, Yang L, Ma L, Tian X, Li R, Zhou C, et al. Virome of Camellia japonica: discovery of and molecular characterization of new viruses of different taxa in camellias. Front Microbiol. 2020;2020:945. https://doi.org/10.3389/fmicb.2020.00945.

Article  Google Scholar 

Mutuku JM, Wamonje FO, Mukeshimana G, Njuguna J, Wamalwa M, Choi S-K, et al. Metagenomic Analysis of Plant Virus Occurrence in Common Bean (Phaseolus vulgaris) in Central Kenya. Front Microbiol. 2018;9:2939. https://doi.org/10.3389/fmicb.2018.02939.

Article  PubMed  PubMed Central  Google Scholar 

Hao X, Zhang W, Zhao F, Liu Y, Qian W, Wang Y, et al. Discovery of plant viruses from tea plant (Camellia sinensis (L.) O. Kuntze) by metagenomic sequencing. Front Microbiol. 2018;9:2175. https://doi.org/10.3389/fmicb.2018.02175.

Article  PubMed  PubMed Central  Google Scholar 

Díaz-Cruz GA, Smith CM, Wiebe KF, Villanueva SM, Klonowski AR, Cassone BJ. Applications of next-generation sequencing for large-scale pathogen diagnoses in soybean. Plant Dis. 2019;103:1075–83. https://doi.org/10.1094/PDIS-05-18-0905-RE.

Article  PubMed  Google Scholar 

Jo Y, Yoon YN, Jang Y-W, Choi H, Lee Y-H, Kim S-M, et al. Soybean viromes in the Republic of Korea revealed by RT-PCR and next-generation sequencing. Microorg. 2020. https://doi.org/10.3390/microorganisms8111777.

Article  Google Scholar 

Groves C, Germ

留言 (0)

沒有登入
gif