Renal imaging at 5 T versus 3 T: a comparison study

Uğurbil K (2012) The road to functional imaging and ultrahigh fields. Neuroimage 62(2):726–735

Article  Google Scholar 

Nakada T (2007) Clinical application of high and ultra high-field MRI. Brain Develop 29(6):325–335

Article  Google Scholar 

Von Morze C, Xu D, Purcell DD et al (2007) Intracranial time-of-flight MR angiography at 7T with comparison to 3T. J Magn Reson Imaging 26(4):900–904

Article  Google Scholar 

Rutland J, Delman B, Gill C, Zhu C, Shrivastava R, Balchandani P (2020) Emerging use of ultra-high-field 7T MRI in the study of intracranial vascularity: state of the field and future directions. AJNR Am J Neuroradiol 41(1):2–9

CAS  Article  Google Scholar 

McKiernan EF, O’Brien JT (2017) 7T MRI for neurodegenerative dementias in vivo: a systematic review of the literature. J Neurol Neurosurg Psychiatry 88(7):564–574

Article  Google Scholar 

Juras V, Mlynarik V, Szomolanyi P, Valkovič L, Trattnig S (2019) Magnetic resonance imaging of the musculoskeletal system at 7t: morphological imaging and beyond. Top Magn Reson Imaging 28(3):125

Article  Google Scholar 

Regatte RR, Schweitzer ME (2007) Ultra-high-field MRI of the musculoskeletal system at 7.0 T. J Magn Reson Imaging 25(2):262–269

Article  Google Scholar 

medgadget.com. EU Gives First Approval for Ultra-High-Field MRI Scanner, The Siemens Magnetom Terra. https://www.medgadget.com/2017/08/eu-gives-first-approval-ultra-high-field-mri-scanner-siemens-magnetom-terra.html. Accessed 23 Nov 2021

medgadget.com. FDA Gives First Clearance to Siemens High-Field 7 Tesla MRI Scanner. https://www.medgadget.com/2017/10/fda-gives-first-clearance-high-field-7-tesla-mri-scanner.html. Accessed 23 Nov 2021

Karamat MI, Darvish-Molla S, Santos-Diaz A (2016) Opportunities and challenges of 7 tesla magnetic resonance imaging: a review. Crit Rev Biomed Eng 44(1–02):73–89. https://doi.org/10.1615/CritRevBiomedEng.2016016365

Article  PubMed  Google Scholar 

Kraff O, Quick HH (2017) 7T: physics, safety, and potential clinical applications. J Magn Reson Imaging 46(6):1573–1589

Article  Google Scholar 

Laader A, Beiderwellen K, Kraff O et al (2017) 1.5 versus 3 versus 7 Tesla in abdominal MRI: a comparative study. PLoS One 12(11):e0187528

Article  Google Scholar 

Umutlu L, Orzada S, Kinner S et al (2011) Renal imaging at 7 Tesla: preliminary results. Eur Radiol 21(4):841–849

Article  Google Scholar 

Zhang Y, Yang C, Liang L et al (2022) Preliminary experience of 5.0 T higher field abdominal diffusion-weighted MRI: agreement of apparent diffusion coefficient with 3.0 T imaging. J Magn Reson Imaging. https://doi.org/10.1002/jmri.28097

Article  PubMed  Google Scholar 

Hartwig V, Giovannetti G, Vanello N, Lombardi M, Landini L, Simi S (2009) Biological effects and safety in magnetic resonance imaging: a review. Int J Environ Res Public Health 6(6):1778–1798

Article  Google Scholar 

von Falkenhausen M, Meyer C, Lutterbey G et al (2007) Intra-individual comparison of image contrast in SPIO-enhanced liver MRI at 1.5 T and 3.0 T. Eur Radiol 17(5):1256–1261

Article  Google Scholar 

Kollia K, Maderwald S, Putzki N et al (2009) First clinical study on ultra-high-field MR imaging in patients with multiple sclerosis: comparison of 1.5 T and 7T. AJNR Am J Neuroradiol 30(4):699–702

CAS  Article  Google Scholar 

Barisano G, Sepehrband F, Ma S et al (2019) Clinical 7 T MRI: Are we there yet? A review about magnetic resonance imaging at ultra-high field. Br J Radiol 92(1094):20180492

Article  Google Scholar 

Umutlu L, Maderwald S, Kraff O et al (2012) New look at renal vasculature: 7 tesla nonenhanced T1-weighted FLASH imaging. J Magn Reson Imaging 36(3):714–721

CAS  Article  Google Scholar 

Maderwald S, Ladd SC, Gizewski ER et al (2008) To TOF or not to TOF: strategies for non-contrast-enhanced intracranial MRA at 7 T. MAGMA 21(1–2):159

Article  Google Scholar 

Kuhl CK, Traber F, Schild HH (2008) Whole-body high-field-strength (3.0-T) MR imaging in clinical practice part I. Technical considerations and clinical applications. Radiology 246(3):675–696

Article  Google Scholar 

Darwish T, Wood B (2009) Nephrogenic systemic fibrosis: what internists need to know. Mo Med 106(5):373–376

PubMed  Google Scholar 

Schmidt GP, Wintersperger B, Graser A, Baur-Melnyk A, Reiser MF, Schoenberg SO (2007) High-resolution whole-body magnetic resonance imaging applications at 1.5 and 3 Tesla: a comparative study. Invest Radiol 42(6):449–459

Article  Google Scholar 

Foley W, Kneeland J, Cates J et al (1987) Contrast optimization for the detection of focal hepatic lesions by MR imaging at 1.5 T. AJR Am J Roentgenol 149(6):1155–1160

CAS  Article  Google Scholar 

Chung MS, Choi HJ, Kim M-H, Cho K-S (2014) Comparison of T2-weighted MRI with and without fat suppression for differentiating renal angiomyolipomas without visible fat from other renal tumors. AJR Am J Roentgenol 202(4):765–771

Article  Google Scholar 

Kraff O, Fischer A, Nagel AM, Mönninghoff C, Ladd ME (2015) MRI at 7 Tesla and above: demonstrated and potential capabilities. J Magn Reson Imaging 41(1):13–33

Article  Google Scholar 

Van de Moortele PF, Akgun C, Adriany G et al (2005) B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 54(6):1503–1518

Article  Google Scholar 

Johst S, Orzada S, Fischer A, Umutlu L, Ladd ME, Maderwald S (2014) Comparison of fat saturation techniques for single-shot fast spin echo sequences for 7-T body imaging. Invest Radiol 49(2):101–108

Article  Google Scholar 

Hahnemann ML, Kraff O, Maderwald S et al (2016) Non-enhanced magnetic resonance imaging of the small bowel at 7 Tesla in comparison to 1.5 Tesla: first steps towards clinical application. Magn Reson Imaging 34(5):668–673

Article  Google Scholar 

Thoeny HC, De Keyzer F, Oyen RH, Peeters RR (2005) Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 235(3):911–917

Article  Google Scholar 

Yu X, Lin M, Ouyang H, Zhou C, Zhang H (2012) Application of ADC measurement in characterization of renal cell carcinomas with different pathological types and grades by 3.0 T diffusion-weighted MRI. Eur J Radiol 81(11):3061–3066

Article  Google Scholar 

Hueper K, Khalifa AA, Bräsen JH et al (2016) Diffusion-weighted imaging and diffusion tensor imaging detect delayed graft function and correlate with allograft fibrosis in patients early after kidney transplantation. J Magn Reson Imaging 44(1):112–121

Article  Google Scholar 

Sánchez-González J, Luna A (2012) DWI at 3 T: advantages, disadvantages, pitfalls, and advanced clinical applications. In: Luna A, Ribes R, Soto JA (eds) Diffusion MRI outside the brain. Springer Berlin Heidelberg, Berlin, pp 51–73. https://doi.org/10.1007/978-3-642-21052-5_4

Chapter  Google Scholar 

He Y-L, Hausmann D, Morelli JN, Attenberger UI, Schoenberg SO, Riffel P (2016) Renal zoomed EPI-DWI with spatially-selective radiofrequency excitation pulses in two dimensions. Eur J Radiol 85(10):1773–1777

Article  Google Scholar 

Xie Y, Li Y, Wen J et al (2018) Functional evaluation of transplanted kidneys with reduced field-of-view diffusion-weighted imaging at 3T. Korean J Radiol 19(2):201–208

Article  Google Scholar 

Schmid-Tannwald C, Oto A, Reiser MF, Zech CJ (2013) Diffusion-weighted MRI of the abdomen: current value in clinical routine. J Magn Reson Imaging 37(1):35–47

Article  Google Scholar 

Donati OF, Chong D, Nanz D et al (2014) Diffusion-weighted MR imaging of upper abdominal organs: field strength and intervendor variability of apparent diffusion coefficients. Radiology 270(2):454–463

Article  Google Scholar 

Rosenkrantz AB, Oei M, Babb JS, Niver BE, Taouli B (2011) Diffusion-weighted imaging of the abdomen at 3.0 Tesla: image quality and apparent diffusion coefficient reproducibility compared with 1.5 Tesla. J Magn Reson Imaging 33(1):128–135

Article  Google Scholar 

Singh P, Ricksten SE, Bragadottir G, Redfors B, Nordquist L (2013) Renal oxygenation and haemodynamics in acute kidney injury and chronic kidney disease. Clin Exp Pharmacol Physiol 40(2):138–147

CAS  Article  Google Scholar 

Friederich-Persson M, Thörn E, Hansell P, Nangaku M, Levin M, Palm F (2013) Kidney hypoxia, attributable to increased oxygen consumption, induces nephropathy independently of hyperglycemia and oxidative stress. Hypertension 62(5):914–919

CAS  Article  Google Scholar 

Ebrahimi B, Textor SC, Lerman LO (2014) Renal relevant radiology: renal functional magnetic resonance imaging. Clin J Am Soc Nephrol 9(2):395–405

Article  Google Scholar 

Gloviczki ML, Glockner J, Gomez SI et al (2009) Comparison of 1.5 and 3T BOLD MR to study oxygenation of kidney cortex and medulla in human renovascular disease. Invest Radiol 44(9):566

CAS  Article  Google Scholar 

Welsch GH, Apprich S, Zbyn S et al (2011) Biochemical (T2, T2* and magnetisation transfer ratio) MRI of knee cartilage: feasibility at ultra-high field (7T) compared with high field (3T) strength. Eur Radiol 21(6):1136–1143

Article  Google Scholar 

留言 (0)

沒有登入
gif