Intensity of sample processing methods impacts wastewater SARS-CoV-2 whole genome amplicon sequencing outcomes

Abstract

Wastewater SARS-CoV-2 surveillance has been deployed since the beginning of the COVID-19 pandemic to monitor dynamics in virus burden in local communities. Genomic surveillance of SARS-CoV-2 in wastewater, particularly the efforts for whole genome sequencing for variant tracking or identification, are comparatively challenging due to low target concentration, complex microbial and chemical background, and lack of robust nucleic acid recovery experimental procedures. The intrinsic sample limitations are inherent to wastewater. In this study, we evaluated impacts from sample types, certain sample intrinsic features, and processing and sequencing methods on sequencing outcomes with a specific focus on the breadth of genome coverage. We collected 184 composite and grab wastewater samples from the Chicago area between March to October 2021 for SARS-CoV-2 quantification and genomic surveillance. Samples were processed using a mixture of processing methods reflecting different homogenization intensities (HA+Zymo beads, HA+glass beads, and Nanotrap), and were sequenced using two sequencing library preparation kits (the Illumina COVIDseq kit and the QIAseq DIRECT kit). A synthetic SARS-CoV-2 RNA experiment was performed to validate the potential impacts of processing methods on sequencing outcomes. Our findings suggested that 1) SARS-CoV-2 whole genome sequencing outcomes were associated with sample types and processing methods 2) in less intensive method processed samples (HA+glass beads), higher genome breadth of coverage in sequencing (over 80%) was associated with N1 concentration > 105 cp/L, while in intensive method (HA+Zymo beads), qPCR results were inconsistent with sequencing outcomes, and 3) sample processing methods and sequencing kits, rather than the extraction methods or intrinsic features of wastewater samples, played important roles in wastewater SARS-CoV-2 amplicon sequencing. Overall, extra attention should be paid to wastewater sample processing (e.g., concentration and homogenization) for sufficient, good quality RNA yield for downstream sequencing.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study was funded by Walder Foundation

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

All data produced in the present work are contained in the manuscript.

留言 (0)

沒有登入
gif