Genetic dissection of TLR9 reveals complex regulatory and cryptic proinflammatory roles in mouse lupus

Tsokos, G. C., Lo, M. S., Costa Reis, P. & Sullivan, K. E. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat. Rev. Rheumatol. 12, 716–730 (2016).

CAS  PubMed  Article  Google Scholar 

Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6, 823–835 (2006).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Teichmann, L. L., Schenten, D., Medzhitov, R., Kashgarian, M. & Shlomchik, M. J. Signals via the adaptor MyD88 in B cells and DCs make distinct and synergistic contributions to immune activation and tissue damage in lupus. Immunity 38, 528–540 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Christensen, S. R. et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417–428 (2006).

CAS  PubMed  Article  Google Scholar 

Bossaller, L. et al. TLR9 deficiency leads to accelerated renal disease and myeloid lineage abnormalities in pristane-induced murine lupus. J. Immunol. 197, 1044–1053 (2016).

CAS  PubMed  Article  Google Scholar 

Fairhurst, A. M. et al. Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur. J. Immunol. 38, 1971–1978 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nickerson, K. M., Wang, Y., Bastacky, S. & Shlomchik, M. J. Toll-like receptor 9 suppresses lupus disease in Fas-sufficient MRL mice. PLoS ONE 12, e0173471 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Jackson, S. W. et al. Opposing impact of B cell-intrinsic TLR7 and TLR9 signals on autoantibody repertoire and systemic inflammation. J. Immunol. 192, 4525–4532 (2014).

CAS  PubMed  Article  Google Scholar 

Scofield, R. H. et al. Klinefelter’s syndrome (47,XXY) in male systemic lupus erythematosus patients: support for the notion of a gene-dose effect from the X chromosome. Arthritis Rheum. 58, 2511–2517 (2008).

PubMed  PubMed Central  Article  Google Scholar 

Lee, Y. H., Choi, S. J., Ji, J. D. & Song, G. G. Association between Toll-like receptor polymorphisms and systemic lupus erythematosus: a meta-analysis update. Lupus 25, 593–601 (2016).

CAS  PubMed  Article  Google Scholar 

Garcia-Ortiz, H. et al. Association of TLR7 copy number variation with susceptibility to childhood-onset systemic lupus erythematosus in Mexican population. Ann. Rheum. Dis. 69, 1861–1865 (2010).

CAS  PubMed  Article  Google Scholar 

Brown, G. J. et al. TLR7 gain-of-function genetic variation causes human lupus. Nature 605, 349–356 (2022).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nickerson, K. M. et al. TLR9 regulates TLR7- and MyD88-dependent autoantibody production and disease in a murine model of lupus. J. Immunol. 184, 1840–1848 (2010).

CAS  PubMed  Article  Google Scholar 

Kim, Y. M., Brinkmann, M. M., Paquet, M. E. & Ploegh, H. L. UNC93B1 delivers nucleotide-sensing Toll-like receptors to endolysosomes. Nature 452, 234–238 (2008).

CAS  PubMed  Article  Google Scholar 

Fukui, R. et al. Unc93B1 biases Toll-like receptor responses to nucleic acid in dendritic cells toward DNA- but against RNA-sensing. J. Exp. Med. 206, 1339–1350 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fukui, R. et al. Unc93B1 restricts systemic lethal inflammation by orchestrating Toll-like receptor 7 and 9 trafficking. Immunity 35, 69–81 (2011).

CAS  PubMed  Article  Google Scholar 

Stoehr, A. D. et al. TLR9 in peritoneal B-1b cells is essential for production of protective self-reactive IgM to control TH17 cells and severe autoimmunity. J. Immunol. 187, 2953–2965 (2011).

CAS  PubMed  Article  Google Scholar 

Tilstra, J. S. et al. B cell-intrinsic TLR9 expression is protective in murine lupus. J. Clin. Invest. 130, 3172–3187 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Peter, M. E., Kubarenko, A. V., Weber, A. N. & Dalpke, A. H. Identification of an N-terminal recognition site in TLR9 that contributes to CpG-DNA-mediated receptor activation. J. Immunol. 182, 7690–7697 (2009).

CAS  PubMed  Article  Google Scholar 

Christensen, S. R. et al. Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. J. Exp. Med. 202, 321–331 (2005).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nickerson, K. M., Cullen, J. L., Kashgarian, M. & Shlomchik, M. J. Exacerbated autoimmunity in the absence of TLR9 in MRL.Faslpr mice depends on Ifnar1. J. Immunol. 190, 3889–3894 (2013).

CAS  PubMed  Article  Google Scholar 

Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

CAS  PubMed  Article  Google Scholar 

Syrett, C. M., Sierra, I., Beethem, Z. T., Dubin, A. H. & Anguera, M. C. Loss of epigenetic modifications on the inactive X chromosome and sex-biased gene expression profiles in B cells from NZB/W F1 mice with lupus-like disease. J. Autoimmun. 107, 102357 (2020).

CAS  PubMed  Article  Google Scholar 

Souyris, M. et al. TLR7 escapes X chromosome inactivation in immune cells. Sci. Immunol. 3, eaap8855 (2018).

PubMed  Article  Google Scholar 

Azulay-Debby, H., Edry, E. & Melamed, D. CpG DNA stimulates autoreactive immature B cells in the bone marrow. Eur. J. Immunol. 37, 1463–1475 (2007).

CAS  PubMed  Article  Google Scholar 

Nickerson, K. M. et al. TLR9 promotes tolerance by restricting survival of anergic anti-DNA B cells, yet is also required for their activation. J. Immunol. 190, 1447–1456 (2013).

CAS  PubMed  Article  Google Scholar 

Scharer, C. D. et al. Epigenetic programming underpins B cell dysfunction in human SLE. Nat. Immunol. 20, 1071–1082 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wang, S. et al. IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B cells in SLE. Nat. Commun. 9, 1758 (2018).

PubMed  PubMed Central  Article  Google Scholar 

Saelee, P., Kearly, A., Nutt, S. L. & Garrett-Sinha, L. A. Genome-wide identification of target genes for the key B cell transcription factor Ets1. Front Immunol. 8, 383 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Kikuchi, H., Nakayama, M., Takami, Y., Kuribayashi, F. & Nakayama, T. EBF1 acts as a powerful repressor of Blimp-1 gene expression in immature B cells. Biochem. Biophys. Res. Commun. 422, 780–785 (2012).

CAS  PubMed  Article  Google Scholar 

Schmidlin, H. et al. Spi-B inhibits human plasma cell differentiation by repressing BLIMP1 and XBP-1 expression. Blood 112, 1804–1812 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Willis, S. N. et al. Environmental sensing by mature B cells is controlled by the transcription factors PU.1 and SpiB. Nat. Commun. 8, 1426 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Carotta, S. et al. The transcription factors IRF8 and PU.1 negatively regulate plasma cell differentiation. J. Exp. Med. 211, 2169–2181 (2014).

PubMed  PubMed Central  Article  Google Scholar 

Garrett-Sinha, L. A., Kearly, A. & Satterthwaite, A. B. The role of the transcription factor Ets1 in lupus and other autoimmune diseases. Crit. Rev. Immunol. 36, 485–510 (2016).

PubMed  PubMed Central  Article  Google Scholar 

Thomsen, I. et al. RUNX1 regulates a transcription program that affects the dynamics of cell cycle entry of naive resting B cells. J. Immunol. 207, 2976–2991 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Emslie, D. et al. Oct2 enhances antibody-secreting cell differentiation through regulation of IL-5 receptor α chain expression on activated B cells. J. Exp. Med. 205, 409–421 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Scharer, C. D., Barwick, B. G., Guo, M., Bally, A. P. R. & Boss, J. M. Plasma cell differentiation is controlled by multiple cell division-coupled epigenetic programs. Nat. Commun. 9, 1698 (2018).

PubMed  PubMed Central  Article  Google Scholar 

Goel, R. R. et al. Interferon λ promotes immune dysregulation and tis

留言 (0)

沒有登入
gif