Responses of soil microbial carbon use efficiency to warming: Review and prospects

Allison, S.D., 2014. Modeling adaptation of carbon use efficiency in microbial communities. Frontiers in Microbiology 5, 571.

Article  Google Scholar 

Allison, S.D., Wallenstein, M.D., Bradford, M.A., 2010. Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience 3, 330–340.

Article  Google Scholar 

Apple, J.K., del Giorgio, P.A., Kemp, W.M., 2006. Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary. Aquatic Microbial Ecology 43, 243–254.

Article  Google Scholar 

Barros, N., Hansen, L.D., Pineiro, V., Pérez-Cruzado, C., Villanueva, M., Proupín, J., Rodríguez-Añón, J.A., 2016. Factors influencing the calorespirometric ratios of soil microbial metabolism. Soil Biology & Biochemistry 92, 221–229.

CAS  Article  Google Scholar 

Batjes, N.H., 2016. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma 269, 61–68.

CAS  Article  Google Scholar 

Birch, H., 1958. The effect of soil drying on humus decomposition and nitrogen availability. Plant and Soil 10, 9–31.

CAS  Article  Google Scholar 

Bonner, M.T.L., Shoo, L.P., Brackin, R., Schmidt, S., 2018. Relationship between microbial composition and substrate use efficiency in a tropical soil. Geoderma 315, 96–103.

CAS  Article  Google Scholar 

Canarini, A., Wanek, W., Watzka, M., Sandén, T., Spiegel, H., Šantrůček, J., Schnecker, J., 2020. Quantifying microbial growth and carbon use efficiency in dry soil environments via 18O water vapor equilibration. Global Change Biology 26, 5333–5341.

Article  Google Scholar 

Chen, J., Elsgaard, L., van Groenigen, K.J., Olesen, J.E., Liang, Z., Jiang, Y., Laerke, P.E., Zhang, Y., Luo, Y., Hungate, B.A., Sinsabaugh, R.L., Jørgensen, U., 2020. Soil carbon loss with warming: New evidence from carbon-degrading enzymes. Global Change Biology 26, 1944–1952.

Article  Google Scholar 

Chen, X., Xia, Y., Rui, Y., Ning, Z., Hu, Y., Tang, H., He, H., Li, H., Kuzyakov, Y., Ge, T., Wu, J., Su, Y., 2020. Microbial carbon use efficiency, biomass turnover, and necromass accumulation in paddy soil depending on fertilization. Agriculture, Ecosystems & Environment 292, 106816.

CAS  Article  Google Scholar 

Chen, Y., Feng, J., Yuan, X., Zhu, B., 2020. Effects of warming on carbon and nitrogen cycling in alpine grassland ecosystems on the Tibetan Plateau: A meta-analysis. Geoderma 370, 114363.

CAS  Article  Google Scholar 

Cleveland, C.C., Liptzin, D., 2007. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85, 235–252.

Article  Google Scholar 

Creamer, C., Jones, D., Baldock, J., Rui, Y., Murphy, D.V., Hoyle, F.C., Farrell, M., 2016. Is the fate of glucose-derived carbon more strongly driven by nutrient availability, soil texture, or microbial biomass size? Soil Biology & Biochemistry 103, 201–212.

CAS  Article  Google Scholar 

Cruz-Paredes, C., Tájmel, D., Rousk, J., 2021. Can moisture affect temperature dependences of microbial growth and respiration? Soil Biology & Biochemistry 156, 108223.

CAS  Article  Google Scholar 

del Giorgio, P.A., Cole, J.J., 1998. Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology, Evolution, and Systematics 29, 503–541.

Article  Google Scholar 

Dijkstra, P., Thomas, S.C., Heinrich, P.L., Koch, G.W., Schwartz, E., Hungate, B.A., 2011. Effect of temperature on metabolic activity of intact microbial communities: Evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency. Soil Biology & Biochemistry 43, 2023–2031.

CAS  Article  Google Scholar 

Domeignoz-Horta, L.A., Pold, G., Liu, X.A., Frey, S.D., Melillo, J.M., DeAngelis, K.M., 2020. Microbial diversity drives carbon use efficiency in a model soil. Nature Communications 11, 3684.

CAS  Article  Google Scholar 

Dove, N.C., Torn, M.S., Hart, S.C., Taş, N., 2021. Metabolic capabilities mute positive response to direct and indirect impacts of warming throughout the soil profile. Nature Communications 12, 2089.

CAS  Article  Google Scholar 

Feng, X., Simpson, A., Wilson, K., Dudley Williams, D., Simpson, M.J., 2008. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nature Geoscience 1, 830–839.

Article  Google Scholar 

Fisk, M., Santangelo, S., Minick, K., 2015. Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests. Soil Biology & Biochemistry 81, 212–218.

CAS  Article  Google Scholar 

Fontaine, S., Mariotti, A., Abbadie, L., 2003. The priming effect of organic matter: a question of microbial competition? Soil Biology & Biochemistry 35, 837–843.

CAS  Article  Google Scholar 

Frey, S.D., Gupta, V., Elliott, E.T., Paustian, K., 2001. Protozoan grazing affects estimates of carbon utilization efficiency of the soil microbial community. Soil Biology & Biochemistry 33, 1759–1768.

CAS  Article  Google Scholar 

Frey, S.D., Lee, J., Melillo, J.M., Six, J., 2013. The temperature response of soil microbial efficiency and its feedback to climate. Nature Climate Change 3, 395–398.

CAS  Article  Google Scholar 

Friedlingstein, P., O’Sullivan, M., Jones, W.M., Andrew, R.M., Hauck, J., Olsen, A., Peters, G.P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J.G., Ciais, P., Jackson, R.B., Alin, S., Aragão, L.E.O.C., Arneth, A., Arora, V., Bates, N.R., Becker, M., Benoit-Cattin, A., Bittig, H.C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L.P., Evans, W., Florentie, L., Forster, P.M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R.A., Ilyina, T., Jain, A.K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J.I., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D.R., Nabel, J.E.M.S., Nakaoka, S.I., Niwa, Y., O’Brien, K., Ono, T., Palmer, P.I., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A.J.P., Sutton, A.J., Tanhua, T., Tans, P.P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A.P., Wanninkhof, R., Watson, A.J., Willis, D., Wiltshire, A.J., Yuan, W., Yue, X., Zaehle, S., 2020. Global carbon budget 2020. Earth System Science Data 12, 3269–3340.

Article  Google Scholar 

Fuchslueger, L., Wild, B., Mooshammer, M., Takriti, M., Kienzl, S., Knoltsch, A., Hofhansl, F., Bahn, M., Richter, A., 2019. Microbial carbon and nitrogen cycling responses to drought and temperature in differently managed mountain grasslands. Soil Biology & Biochemistry 135, 144–153.

CAS  Article  Google Scholar 

Geyer, K.M., Dijkstra, P., Sinsabaugh, R., Frey, S.D., 2019. Clarifying the interpretation of carbon use efficiency in soil through methods comparison. Soil Biology & Biochemistry 128, 79–88.

CAS  Article  Google Scholar 

Geyer, K.M., Kyker-Snowman, E., Grandy, A.S., Frey, S.D., 2016. Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127, 173–188.

CAS  Article  Google Scholar 

Guo, X., Feng, J., Shi, Z., Zhou, X., Yuan, M., Tao, X., Hale, L., Yuan, T., Wang, J., Qin, Y., Zhou, A., Fu, Y., Wu, L., He, Z., Van Nostrand, J.D., Ning, D., Liu, X., Luo, Y., Tiedje, J.M., Yang, Y., Zhou, J., 2018. Climate warming leads to divergent succession of grassland microbial communities. Nature Climate Change 8, 813–818.

Article  Google Scholar 

Hall, E.K., Singer, G.A., Kainz, M.J., Lennon, J.T., 2010. Evidence for a temperature acclimation mechanism in bacteria: an empirical test of a membrane-mediated trade-off. Functional Ecology 24, 898–908.

Article  Google Scholar 

Hansen, L.D., Macfarlane, C., McKinnon, N., Smith, B.N., Criddle, R.S., 2004. Use of calorespirometric ratios, heat per CO2 and heat per O2, to quantify metabolic paths and energetics of growing cells. Thermochimica Acta 422, 55–61.

CAS  Article  Google Scholar 

Herron, P.M., Stark, J.M., Holt, C., Hooker, T., Cardon, Z.G., 2009. Microbial growth efficiencies across a soil moisture gradient assessed using 13C-acetic acid vapor and 15N-ammonia gas. Soil Biology & Biochemistry 41, 1262–1269.

CAS  Article  Google Scholar 

Hicks Pries, C.E., Castanha, C., Porras, R.C., Torn, M.S., 2017. The whole-soil carbon flux in response to warming. Science 355, 1420–1423.

CAS  Article  Google Scholar 

Hou, Y., He, K., Chen, Y., Zhao, J., Hu, H., Zhu, B., 2021. Changes of soil organic matter stability along altitudinal gradients in Tibetan alpine grassland. Plant and Soil 458, 21–40.

CAS  Article  Google Scholar 

lovieno, P., Bååth, E., 2008. Effect of drying and rewetting on bacterial growth rates in soil. FEMS Microbiology Ecology 65, 400–407.

Article  Google Scholar 

IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, B.R.J., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., Zhou B., eds. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. In Press.

Kaiser, C., Franklin, O., Dieckmann, U., Richter, A., 2014. Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecology Letters 17, 680–690.

Article  Google Scholar 

Kallenbach, C.M., Wallenstein, M.D., Schipanksi, M.E., Grandy, A.S., 2019. Managing agroecosystems for soil microbial carbon use efficiency: ecological unknowns, potential outcomes, and a path forward. Frontiers in Microbiology 10, 1146.

Article  Google Scholar 

Keiblinger, K.M., Hall, E.K., Wanek, W., Szukics, U., Hämmerle, I., Ellersdorfer, G., Böck, S., Strauss, J., Sterflinger, K., Richter, A., Zechmeister-Boltenstern, S., 2010. The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiology Ecology 73, 430–440.

CAS  Google Scholar 

Kemp, R.B., 2000. “Fire burn and cauldron bubble” (W. Shakespeare): what the calorimetric-respirometric (CR) ratio does for our understanding of cells? Thermochimica Acta 355, 115–124.

CAS  Article  Google Scholar 

Lee, Z.M., Schmidt, T.M., 2014. Bacterial growth efficiency varies in soils under different land management practices. Soil Biology & Biochemistry 69, 282–290.

CAS  Article  Google Scholar 

Lehmann, J., Kleber, M., 2015. The contentious nature of soil organic matter. Nature 528, 60–68.

CAS  Article  Google Scholar 

Lei, J., Guo, X., Zeng, Y., Zhou, J., Gao, Q., Yang, Y., 2021. Temporal changes in global soil respiration since 1987. Nature Communications 12, 403.

CAS  Article  Google Scholar 

Li, J., Sang, C.P., Yang, J.Y., Qu, L., Xia, Z., Sun, H., Jiang, P., Wang, X., He, H., Wang, C., 2021. Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition. Soil Biology & Biochemistry 156, 108207.

CAS  Article  Google Scholar 

Li, J.Q., Pei, J.M., Dijkstra, F.A., Nie, M., Pendall, E., 2021. Microbial carbon use efficiency, biomass residence time and temperature sensitivity across ecosystems and soil depths. Soil Biology & Biochemistry 154, 108117.

CAS  Article  Google Scholar 

Lipson, D.A., 2015. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Frontiers in Microbiology 6, 615.

Article 

留言 (0)

沒有登入
gif