An in vitro and in silico α-amylase/α-glucosidase/protein tyrosine phosphatase 1 beta & radical scavenging profiling of the 3,5,7-tricarbo substituted 1H-indazoles

Vieira R, Souto SB, Sánchez-López E, Machado AL, Severino P, Jose S, et al. Sugar-lowering drugs for type 2 diabetes mellitus and metabolic syndrome– review of classical and new compounds: Part-I. Pharmaceuticals. 2019;12:152. https://doi.org/10.3390/ph12040152.

CAS  Article  PubMed Central  Google Scholar 

Ghabi A, Brahmi J, Almiderej F, Messaaoudi S, Vidal S, Kadri A, et al. Multifunctional isoxazolidine derivatives as α-amylase and α-glucosidase inhibitors. Bioorg Chem. 2020;98:103713. https://doi.org/10.1016/j.bioorg.2020.103713.

CAS  Article  PubMed  Google Scholar 

Alam F, Shafique Z, Amjad ST, Bin Asad MHH. Enzymes inhibitors from natural sources with antidiabetic activity: A review. Phytother Res. 2019;33:41–54. https://doi.org/10.1002/ptr.6211.

CAS  Article  PubMed  Google Scholar 

Imran S, Taha M, Selvaraj M, Ismail NH, Chigurupati S, Mohammad JI. Synthesis and biological evaluation of indole derivatives as α-amylase inhibitor. Bioorg Chem. 2017;73:121–7. https://doi.org/10.1016/j.bioorg.2017.06.007.

CAS  Article  PubMed  Google Scholar 

Aispuro-Pérez A, López-Ávalos J, García-Páez F, Montes-Avila J, Picos Corrales LA, Ochoa-Terán A, et al. Synthesis and molecular docking studies of imines as α-glucosidase and α-amylase inhibitors. Bioorg Chem. 2020;94:103491. https://doi.org/10.1016/j.bioorg.2019.103491.

CAS  Article  PubMed  Google Scholar 

Norrisa K, Norrisa F, Konod DH, Vestergaard H, Pedersen O, Theofilopoulos AN, et al. Expression of protein-tyrosine phosphatases in the major insulin target tissues. FEBS Lett. 1997;415:243–8. https://doi.org/10.1016/S0014-5793(97)01133-2.

Article  Google Scholar 

Tonks NK, Neel BG. Combinatorial control of the specificity of protein tyrosine phosphatases. Curr Opin Cell Biol. 2001;13:182–95. https://doi.org/10.1016/s0955-0674(00)00196-4.

CAS  Article  PubMed  Google Scholar 

Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science. 1999;283:1544–8. https://doi.org/10.1126/science.283.5407.1544.

CAS  Article  PubMed  Google Scholar 

Burgos-Morón E, Abad-Jiménez Z, De Marañón AM, Iannantuoni F, Escribano-López I, López-Domènech S, et al. Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: The battle continues. J Clin Med. 2019;8:1385. https://doi.org/10.3390/jcm8091385.

CAS  Article  PubMed Central  Google Scholar 

McGarry T, Biniecka T, Veala GJ, Rearon U. Hypoxia, oxidative stress and inflammation. Free Rad Biol Med. 2018;125:15–24. https://doi.org/10.1016/j.freeradbiomed.2018.03.042.

CAS  Article  PubMed  Google Scholar 

Chetan S, Amarjeet K, Thind SS, Baljit S, Shiveta R. Advanced glycation End-products (AGEs): An emerging concern for processed food industries. J Food Sci Technol. 2015;52:7561–76. https://doi.org/10.1007/s13197-015-1851-y.

CAS  Article  Google Scholar 

Sheela A, Sarada NC, Vijayaraghavan R. A possible correlation between antioxidant and antidiabetic potentials of oxovanadium(IV) complexes. Med Chem Res. 2013;22:2929–37. https://doi.org/10.1007/s00044-012-0287-4.

CAS  Article  Google Scholar 

Barmak A, Niknam K, Mohhebi G. Synthesis, structural studies, and α‑glucosidase inhibitory, antidiabetic, and antioxidant activities of 2,3-dihydroquinazolin-4(1H)‑ones derived from pyrazol-4-carbaldehyde and anilines. ACS Omega. 2019;4:18087–99. https://doi.org/10.1021/acsomega.9b01906.

CAS  Article  PubMed Central  PubMed  Google Scholar 

Liu Y, Ma L, Chen W-H, Park H, Ke Z, Wang B. Binding mechanism and synergetic effects of xanthone derivatives as noncompetitive α-glucosidase inhibitors: a theoretical and experimental study. J Phys Chem B. 2013;117:13464–71. https://doi.org/10.1021/jp4067235.

CAS  Article  PubMed  Google Scholar 

Artasensi A, Pedretti A, Vistoli G, Fumagalli L. Type 2 diabetes mellitus: A review of multi-target drugs. Molecules. 2020;25:1987. https://doi.org/10.3390/molecules25081987.

CAS  Article  PubMed Central  Google Scholar 

Taylor AP, Robinson RP, Fobian YM, Blakemore DC, Jones LH, Fadeyi O. Modern advances in heterocyclic chemistry in drug discovery. Org Biomol Chem. 2016;14:6611–37. https://doi.org/10.1039/c6ob00936.

CAS  Article  PubMed  Google Scholar 

Hagmann WK. The many roles of fluorine in medicinal chemistry. J Med Chem. 2008;51:4359–69. https://doi.org/10.1021/jm800219f.

CAS  Article  PubMed  Google Scholar 

Purser S, Moore PR, Swallow S, Gouverneur V. Fluorine in medicinal chemistry. Chem Soc Rev. 2008;37:320–30. https://doi.org/10.1039/b610213c.

CAS  Article  PubMed  Google Scholar 

Böhm H, Banner D, Bendels S, Kansy M, Kuhn B, Müller K, et al. Fluorine in medicinal chemistry. ChemBioChem. 2004;5:637–43. https://doi.org/10.1002/cbic.200301023.

CAS  Article  PubMed  Google Scholar 

Lu Y, Liu Y, Xu Z, Li H, Liu H, Zhu W. Halogen bonding for rational drug design and new drug discovery. Expert Opin Drug Disco. 2012;7:375–83. https://doi.org/10.1517/17460441.2012.678829.

CAS  Article  Google Scholar 

Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J Med Chem. 2012;56:1363–88. https://doi.org/10.1021/jm3012068.

CAS  Article  Google Scholar 

Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. 2nd ed. Darmstadt, Germany: WILEY-VCH; 2013. ISBN 9783527603930.

Book  Google Scholar 

Cottyn B, Acher F, Ramassamy B, Alvey L, Lepoivre M, Frapart Y, et al. Inhibitory effects of a series of 7-substituted-indazoles toward nitric oxide synthases: Particular potency of 1H-indazole-7-carbonitrile. Bioorg Med Chem. 2008;16:5962–73. https://doi.org/10.1016/j.bmc.2008.04.056.

CAS  Article  PubMed  Google Scholar 

Claramunt RM, López C, Pérez-Medina C, Pérez-Torralba M, Elguero J, Escames G, et al. Fluorinated indazoles as novel selective inhibitors of nitric oxide synthase(NOS): Synthesis and biological evaluation. Bioorg Med Chem. 2009;17:6180–7. https://doi.org/10.1016/j.bmc.2009.07.067.

CAS  Article  PubMed  Google Scholar 

Duarte AM, Guarino MP, Barroso S, Gil MM. Phytopharmacological strategies in the management of type 2 diabetes mellitus. Foods. 2020;9:271 https://doi.org/10.3390/foods9030271.

CAS  Article  PubMed Central  Google Scholar 

Yang L, Chen Y, He J, Njoya EM, Chen J, Liu S, et al. 4,6-Substituted-1H-indazoles as potent IDO1/TDO dual inhibitors. Bioorg Med Chem. 2019;27:1087–98. https://doi.org/10.1016/j.bmc.2019.02.01.

CAS  Article  PubMed  Google Scholar 

Wan Y, Li Y, Yan C, Wen J, Tang Z. Discovery of novel indazole-acylsulfonamide hybrids as selective Mcl-1 inhibitors. Bioorg Chem. 2020;104:104217. https://doi.org/10.1016/j.bioorg.2020.104217.

CAS  Article  PubMed  Google Scholar 

Rafique R, Khana KM, Arshia, Chigurupati S, Wadood A, Rehman AU, et al. Synthesis, in vitro α-amylase inhibitory, and radicals (DPPH & ABTS) scavenging potentials of new N-sulfonohydrazide substituted indazoles. Bioorg Med Chem. 2020;94:105410. https://doi.org/10.1016/j.bioorg.2019.10341.

Article  Google Scholar 

Patch RJ, Huang H, Patel S, Cheung W, Xu G, Zhao B-P, et al. Indazole-based ligands for estrogen-related receptor a as potential anti-diabetic agents. Eur J Med Chem. 2017;138:830–53. https://doi.org/10.1016/j.ejmech.2017.07.015.

CAS  Article  PubMed  Google Scholar 

Taneja G, Gupta GP, Mishra S, Srivastava R, Rahuja N, Rawat AK, et al. Synthesis of substituted 2H-benzo[e]indazole-9-carboxylate as a potential antihyperglycemc agent that may act through IRS-1 akt and GSK-3β pathways. Med Chem Commun. 2012;8:329–37. https://doi.org/10.1039/c6md00467.

Article  Google Scholar 

Mphahlele MJ, Magwaza NM, Gildenhuys S, Setshedi IB. Synthesis, α-glucosidase inhibition and antioxidant activity of the 7-carbo–substituted 5-bromo-3-methylindazoles. Bioorg Chem. 2020;97:103702. https://doi.org/10.1016/j.bioorg.2020.103702.

CAS  Article  PubMed  Google Scholar 

Lipunova GN, Nosova EV, Charushin VN, Chupakhin ON. Fluorine-containing indazoles: Synthesis and biological activity. J Fluor Chem. 2016;192:1–21. https://doi.org/10.1016/J.JFLUCHEM.2016.10.007.

CAS  Article  Google Scholar 

Suzuki M, Iwasaki H, Fujikawa Y, Kitahara M, Sakashita M, Sakoda R. Quinoline-based HMG-CoA reductase Inhibitors. Bioorg Med Chem. 2001;9:2727–43. https://doi.org/10.1016/s0968-0896(01)00198-5.

CAS  Article  PubMed  Google Scholar 

Mphahlele MJ, Paumo HK, Choong YS. Synthesis and in vitro cytotoxicity of the 4-(halogenoanilino)-6-bromoquinazolines and their 6-(4-fluorophenyl) substituted derivatives as potential inhibitors of epidermal growth factor receptor tyrosine kinase. Pharmaceuticals. 2017;10:87. https://doi.org/10.3390/ph10040087.

CAS  Article  PubMed Central  Google Scholar 

Shamima S, Khan KM, Ullah N, Chigurupati S, Wadood A, Rehman AU, et al. Synthesis and screening of (E)-3-(2-benzylidenehydrazinyl)-5,6-diphenyl-1,2,4-triazine analogs as novel dual inhibitors of α-amylase and α-glucosidase. Bioorg Chem. 2020;101:103979. https://doi.org/10.1016/j.bioorg.2020.10397.

Article  Google Scholar 

Sekar N, Li J, Shechter Y. Vanadium salts as insulin substitutes: Mechanisms of action, a scientific and therapeutic tool in diabetes mellitus research. Crit Rev Biochem Mol Biol. 1996;31:339–59. https://doi.org/10.3109/1040923960910872.

CAS  Article  PubMed  Google Scholar 

Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes. 2015;6:456–80. https://doi.org/10.4239/wjd.v6.i3.456.

Article  PubMed Central  PubMed 

留言 (0)

沒有登入
gif