Structure–activity relationship of a housefly neuroprotective dodecapeptide that activates the nuclear factor erythroid 2-related factor 2 pathway

Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214. https://doi.org/10.1038/nrd1330

CAS  Article  PubMed  Google Scholar 

Buendia I, Michalska P, Navarro E, Gameiro I, Egea J, León R (2016) Nrf2–ARE pathway: an emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol Therapeut 157:84–104. https://doi.org/10.1016/j.pharmthera.2015.11.003

CAS  Article  Google Scholar 

Moldogazieva NT, Mokhosoev IM, Mel Nikova TI, Porozov YB, Terentiev AA (2019) Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in aging and age-related diseases. Oxid Med Cell Longev 2019:1–14. https://doi.org/10.1155/2019/3085756

CAS  Article  Google Scholar 

Dragicevic N, Copes N, O’Neal-Moffitt G, Jin J, Buzzeo R, Mamcarz M, Tan J, Cao C, Olcese JM, Arendash GW, Bradshaw PC (2011) Melatonin treatment restores mitochondrial function in Alzheimer’s mice: a mitochondrial protective role of melatonin membrane receptor signaling. J Pineal Res 51:75–86. https://doi.org/10.1111/j.1600-079X.2011.00864.x

CAS  Article  PubMed  Google Scholar 

Devore EE, Grodstein F, van Rooij FJA, Hofman A, Stampfer MJ, Witteman JCM, Breteler MMB (2010) Dietary antioxidants and long-term risk of dementia. Arch Neurol 67:819–825. https://doi.org/10.1001/archneurol.2010.144

Article  PubMed  PubMed Central  Google Scholar 

Lm T, Flint BM (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795. https://doi.org/10.1038/nature05292

CAS  Article  Google Scholar 

Cuadrado A, Manda G, Hassan A, Alcaraz MJ, Barbas C, Daiber A, Ghezzi P, León R, López MG, Oliva B, Pajares M, Rojo AI, Robledinos-Antón N, Valverde AM, Guney E, Schmidt HHHW (2018) Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach. Pharmacol Rev 70:348–383. https://doi.org/10.1124/pr.117.014753

CAS  Article  PubMed  Google Scholar 

Daliri E, Oh D, Lee B (2017) Bioactive Peptides. Foods 6:1–21. https://doi.org/10.3390/foods6050032

CAS  Article  Google Scholar 

Caruso G, Benatti C, Musso N, Fresta CG, Fidilio A, Spampinato G, Brunello N, Bucolo C, Drago F, Lunte SM, Peterson BR, Tascedda F, Caraci F (2021) Carnosine protects macrophages against the toxicity of Aβ1-42 oligomers by decreasing oxidative stress. Biomedicines 9:1–22. https://doi.org/10.3390/biomedicines9050477

CAS  Article  Google Scholar 

Caruso G, Godos J, Castellano S, Micek A, Murabito P, Galvano F, Ferri R, Grosso G, Caraci F (2021) The therapeutic potential of carnosine/anserine supplementation against cognitive decline: a systematic review with meta-analysis. Biomedicines 9:1–17. https://doi.org/10.3390/biomedicines9030253

CAS  Article  Google Scholar 

Zhao T, Su G, Wang S, Zhang Q, Zhang J, Zheng L, Sun B, Zhao M (2017) Neuroprotective effects of acetylcholinesterase inhibitory peptides from anchovy (Coilia mystus) against glutamate-induced toxicity in PC12 cells. J Agr Food Chem 65:11192–11201. https://doi.org/10.1021/acs.jafc.7b03945

CAS  Article  Google Scholar 

Hou L, Shi Y, Zhai P, Le G (2007) Antibacterial activity and in vitro anti-tumor activity of the extract of the larvae of the housefly (Musca domestica). J Ethnopharmacol 111:227–231. https://doi.org/10.1016/j.jep.2006.11.015

Article  PubMed  Google Scholar 

Sun T, Zhang S, Yang W, Zhao Z, Yang D (2019) Housefly pupae-derived antioxidant peptides exerting neuroprotective effects on hydrogen peroxide-induced oxidative damage in PC12 cells. Molecules 24:1–18. https://doi.org/10.3390/molecules24244486

CAS  Article  Google Scholar 

Liao L, Shi J, Jiang C, Zhang L, Feng L, Liu J, Zhang J (2019) Activation of anti-oxidant of curcumin pyrazole derivatives through preservation of mitochondria function and Nrf2 signaling pathway. Neurochem Int 125:82–90. https://doi.org/10.1016/j.neuint.2019.01.026

CAS  Article  PubMed  Google Scholar 

Lee J, Kang U, Seo EK, Kim YS (2016) Heme oxygenase-1-mediated anti-inflammatory effects of tussilagonone on macrophages and 12- O -tetradecanoylphorbol-13-acetate-induced skin inflammation in mice. Int Immunopharmacol 34:155–164. https://doi.org/10.1016/j.intimp.2016.02.026

CAS  Article  PubMed  Google Scholar 

Bradley P, Kira MSM, Baker D (2005) Biochemistry: toward high-resolution de novo structure prediction for small proteins. Science 309:1868–1871. https://doi.org/10.1126/science.1113801

CAS  Article  PubMed  Google Scholar 

Zhang Y, Weber JK, Zhou R (2016) Folding and stabilization of native-sequence-reversed proteins. Sci Rep 6:1–7. https://doi.org/10.1038/srep25138

CAS  Article  Google Scholar 

Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD (2015) Researching glutamate – induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci 9:1–18. https://doi.org/10.3389/fncel.2015.00091

CAS  Article  Google Scholar 

Lavrovsky Y, Chatterjee B, Clark RA, Roy AK (2000) Role of redox-regulated transcription factors in inflammation, aging and age-related diseases. Exp Gerontol 35:521–532. https://doi.org/10.1016/s0531-5565(00)00118-2

CAS  Article  PubMed  Google Scholar 

Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84. https://doi.org/10.1016/j.biocel.2006.07.001

CAS  Article  PubMed  Google Scholar 

Johnson DA, Johnson JA (2015) Nrf2—a therapeutic target for the treatment of neurodegenerative diseases. Free Radical Bio Med 88:253–267. https://doi.org/10.1016/j.freeradbiomed.2015.07.147

CAS  Article  Google Scholar 

Nguyen T, Nioi P, Pickett CB (2009) The Nrf2- antioxidant response element signaling pathway and its activation by oxidative stress. J Bio Chem 284:13291–13295. https://doi.org/10.1074/jbc.R900010200

CAS  Article  Google Scholar 

Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38:769–789. https://doi.org/10.1080/03602530600971974

CAS  Article  PubMed  Google Scholar 

Fachel FNS, Schuh RS, Veras KS, Bassani VL, Koester LS, Henriques AT, Braganhol E, Teixeira HF (2019) An overview of the neuroprotective potential of rosmarinic acid and its association with nanotechnology-based delivery systems: a novel approach to treating neurodegenerative disorders. Neurochem Int 122:47–58. https://doi.org/10.1016/j.neuint.2018.11.003

CAS  Article  PubMed  Google Scholar 

Butterfield DA, Boyd Kimball D (2018) Redox proteomics and amyloid β-peptide: insights into Alzheimer disease. J Neurochem 151:459–487. https://doi.org/10.1111/jnc.14589

CAS  Article  PubMed  PubMed Central  Google Scholar 

McShane R, Westby MJ, Roberts E (2019) Memantine for dementia. Cochrane Database Syst Rev 3:1–291. https://doi.org/10.1002/14651858.CD003154.pub6

Article  Google Scholar 

Birks J, Harvey RJ (2018) Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev 6:1–338. https://doi.org/10.1002/14651858.CD001190.pub3

Article  Google Scholar 

Ruela ALM, Carvalho FC, Pereira GR (2016) Exploring the phase behavior of monoolein/oleic acid/water systems for enhanced donezepil administration for alzheimer disease treatment. J Pharm Sci-US 105:71–77. https://doi.org/10.1016/j.xphs.2015.10.016

CAS  Article  Google Scholar 

François M, Sicsic J, Pelletier Fleury N (2018) Drugs for dementia and excess of hospitalization: a longitudinal french study. J Alzheimer’s Dis 61:1627–1637. https://doi.org/10.3233/JAD-170371

CAS  Article  Google Scholar 

Deardorff WJ, Grossberg G (2016) A fixed-dose combination of memantine extended-release and donepezil in the treatment of moderate-to-severe Alzheimer’s disease. Drug Des Devel Ther 10:3267–3279. https://doi.org/10.2147/DDDT.S86463

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kaddour H, Hamdi Y, Amri F, Bahdoudi S, Bouannee I, Leprince J, Zekri S, Vaudry H, Tonon M, Vaudry D, Amri M, Mezghani S, Masmoudi-Kouki O (2019) Antioxidant and anti-apoptotic activity of octadecaneuropeptide against 6-OHDA toxicity in cultured rat astrocytes. J Mol Neurosci 69:1–16. https://doi.org/10.1007/s12031-018-1181-4

CAS  Article  PubMed  Google Scholar 

Song IK, Lee JJ, Cho JH, Jeong J, Shin DH, Lee KJ (2016) Degradation of redox-sensitive proteins including peroxiredoxins and DJ-1 is promoted by oxidation-induced conformational changes and ubiquitination. Sci Rep 6:1–15. https://doi.org/10.1038/srep34432

CAS  Article  Google Scholar 

Vajrychova M, Salovska B, Pimkova K, Fabrik I, Tambor V, Kondelova A, Bartek J, Hodny Z (2019) Quantification of cellular protein and redox imbalance using SILAC-iodoTMT methodology. Redox Biol 24:1–7. https://doi.org/10.1016/j.redox.2019.101227

CAS  Article  Google Scholar 

Peoples JN, Saraf A, Ghazal N, Pham TT, Kwong JQ (2019) Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med 51:1–13. https://doi.org/10.1038/s12276-019-0355-7

CAS  Article  PubMed  Google Scholar 

Haupt S, Berger M, Goldberg Z, Haupt Y (2003) Apoptosis – the p53 network. J Cell Sci 60:4077–4085. https://doi.org/10.1242/jcs.00739

CAS  Article  Google Scholar 

Copple IM, Dinkova-Kostova AT, Kensler TW, Liby KT, Wigley WC (2017) NRF2 as an emerging therapeutic target. Oxid Med Cell Longev 2017:1–2. https://doi.org/10.1155/2017/8165458

CAS  Article  Google Scholar 

Lastres-Becker I, García-Yagüe AJ, Scannevin RH, Casarejos MJ, Kügler S, Rábano A, Cuadrado A (2016) Repurposing the NRF2 activator dimethyl fumarate as therapy against synucleinopathy in parkinson’s disease. Antioxid Redox Signal 25:61–77. https://doi.org/10.1089/ars.2015.6549

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jazwa A, Cuadrado A (2010) Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Curr Drug Targets 11:1517–1531. https://doi.org/10.2174/1389450111009011517

留言 (0)

沒有登入
gif