Effect of hydroalcoholic seed extract of Nigella sativa on hepatic and pancreatic factors of Nrf2 and FGF21 in the regulation of insulin transcription factors of MafA and PDX-1 in streptozotocin-treated diabetic rats

Jaacks LM, Siegel KR, Gujral UP, Narayan KM. Type 2 diabetes: a 21st century epidemic. Best Pract Res Clin Endocrinol Metab. 2016;30(3):331–43.

PubMed  Article  Google Scholar 

Pappachan JM, Varughese GI, Sriraman R, Arunagirinathan G. Diabetic cardiomyopathy: pathophysiology, diagnostic evaluation and management. World J Diabetes. 2013;4(5):177–89.

PubMed  PubMed Central  Article  Google Scholar 

Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress—a concise review. Saudi Pharm J. 2016;24(5):547–53.

PubMed  Article  Google Scholar 

Ryoo IG, Kwak MK. Regulatory crosstalk between the oxidative stress-related transcription factor Nfe2l2/Nrf2 and mitochondria. Toxicol Appl Pharmacol. 2018;359:24–33.

CAS  PubMed  Article  Google Scholar 

Tsushima M, Liu J, Hirao W, Yamazaki H, Tomita H, Itoh K. Emerging evidence for crosstalk between Nrf2 and mitochondria in physiological homeostasis and in heart disease. Arch Pharmacal Res. 2020;43(3):286–96.

CAS  Article  Google Scholar 

Zhou J, Wang T, Wang H, Jiang Y, Peng S. Obacunone attenuates high glucose-induced oxidative damage in NRK-52E cells by inhibiting the activity of GSK-3β. Biochem Biophys Res Commun. 2019;513(1):226–33.

CAS  PubMed  Article  Google Scholar 

Wang F, Xi Y, Liu W, Li J, Zhang Y, Jia M, He Q, Zhao H, Wang S. Sanbai melon seed oil exerts its protective effects in a diabetes mellitus model via the Akt/GSK-3β/Nrf2 pathway. J Diabetes Res. 2019;2019:5734723.

PubMed  PubMed Central  Google Scholar 

Yagishita Y, Fukutomi T, Sugawara A, Kawamura H, Takahashi T, Pi J, Uruno A, Yamamoto M. Nrf2 protects pancreatic β-cells from oxidative and nitrosative stress in diabetic model mice. Diabetes. 2014;63(2):605–18.

CAS  PubMed  Article  Google Scholar 

Stancill JS, Happ JT, Broniowska KA, Hogg N, Corbett JA. Peroxiredoxin 1 plays a primary role in protecting pancreatic β-cells from hydrogen peroxide and peroxynitrite. Am J Physiol Regul Integr Comp Physiol. 2020;318(5):R1004-r1013.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Meher AK, Sharma PR, Lira VA, Yamamoto M, Kensler TW, Yan Z, Leitinger N. Nrf2 deficiency in myeloid cells is not sufficient to protect mice from high-fat diet-induced adipose tissue inflammation and insulin resistance. Free Radic Biol Med. 2012;52(9):1708–15.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Qin S, Hou DX. Multiple regulations of Keap1/Nrf2 system by dietary phytochemicals. Mol Nutr Food Res. 2016;60(8):1731–55.

CAS  PubMed  Article  Google Scholar 

Furusawa Y, Uruno A, Yagishita Y, Higashi C, Yamamoto M. Nrf2 induces fibroblast growth factor 21 in diabetic mice. Genes Cells. 2014;19(12):864–78.

CAS  PubMed  Article  Google Scholar 

Iizuka K, Takeda J, Horikawa Y. Glucose induces FGF21 mRNA expression through ChREBP activation in rat hepatocytes. FEBS Lett. 2009;583(17):2882–6.

CAS  PubMed  Article  Google Scholar 

Schaap FG, Kremer AE, Lamers WH, Jansen PL, Gaemers IC. Fibroblast growth factor 21 is induced by endoplasmic reticulum stress. Biochimie. 2013;95(4):692–9.

CAS  PubMed  Article  Google Scholar 

Kharitonenkov A, Shanafelt AB. Fibroblast growth factor-21 as a therapeutic agent for metabolic diseases. BioDrugs: Clin Immunother Biopharm Gene Therapy. 2008;22(1):37–44.

CAS  Article  Google Scholar 

Pan Y, Wang B, Zheng J, Xiong R, Fan Z, Ye Y, Zhang S, Li Q, Gong F, Wu C, et al. Pancreatic fibroblast growth factor 21 protects against type 2 diabetes in mice by promoting insulin expression and secretion in a PI3K/Akt signaling-dependent manner. J Cell Mol Med. 2019;23(2):1059–71.

CAS  PubMed  Article  Google Scholar 

Babaknejad N, Nayeri H, Hemmati R, Bahrami S, Esmaillzadeh A. An overview of FGF19 and FGF21: the therapeutic role in the treatment of the metabolic disorders and obesity. Horm Metab Res. 2018;50(6):441–52.

CAS  PubMed  Article  Google Scholar 

Roy B, Palaniyandi SS. Tissue-specific role and associated downstream signaling pathways of adiponectin. Cell Biosci. 2021;11(1):77.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhu Y, Liu Q, Zhou Z, Ikeda Y. PDX1, Neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration. Stem Cell Res Ther. 2017;8(1):240.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fujimoto K, Polonsky KS. Pdx1 and other factors that regulate pancreatic beta-cell survival. Diabetes Obes Metab. 2009;11(Suppl 4):30–7.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Balakrishnan S, Dhavamani S, Prahalathan C. β-Cell specific transcription factors in the context of diabetes mellitus and β-cell regeneration. Mech Dev. 2020;163: 103634.

CAS  PubMed  Article  Google Scholar 

Bule M, Nikfar S, Amini M, Abdollahi M. The antidiabetic effect of thymoquinone: a systematic review and meta-analysis of animal studies. Food Res Int. 2020;127: 108736.

CAS  PubMed  Article  Google Scholar 

Salehi B, Quispe C, Imran M, Ul-Haq I, Živković J, Abu-Reidah IM, Sen S, Taheri Y, Acharya K, Azadi H, et al. Nigella plants—traditional uses, bioactive phytoconstituents, preclinical and clinical studies. Front Pharmacol. 2021;12: 625386.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hamdan A, Haji Idrus R, Mokhtar MH. Effects of Nigella sativa on type-2 diabetes mellitus: a systematic review. Int J Environ Res Public Health. 2019;16(24):4911.

CAS  PubMed Central  Article  Google Scholar 

Champasuri S, Itharat A. Bioactivities of ethanolic extracts of three parts (wood, nutmeg and mace) from Myristica fragrans Houtt. J Med Assoc Thailand = Chotmaihet thangphaet. 2016;99(Suppl 4):S124-130.

Google Scholar 

Eguchi K, Tomizawa H, Ishikawa J, Hoshide S, Numao T, Fukuda T, Shimada K, Kario K. Comparison of the effects of pioglitazone and metformin on insulin resistance and hormonal markers in patients with impaired glucose tolerance and early diabetes. Hypertens Res: Off J Jpn Soc Hypertens. 2007;30(1):23–30.

CAS  Article  Google Scholar 

Chen H, Sullivan G, Yue LQ, Katz A, Quon MJ. QUICKI is a useful index of insulin sensitivity in subjects with hypertension. Am J Physiol Endocrinol Metab. 2003;284(4):E804-812.

CAS  PubMed  Article  Google Scholar 

Sudan R, Bhagat M, Gupta S, Singh J, Koul A. Iron (FeII) chelation, ferric reducing antioxidant power, and immune modulating potential of Arisaema jacquemontii (Himalayan Cobra Lily). Biomed Res Int. 2014;2014: 179865.

PubMed  PubMed Central  Article  Google Scholar 

Hsieh CY, Chen CL, Yang KC, Ma CT, Choi PC, Lin CF. Detection of reactive oxygen species during the cell cycle under normal culture conditions using a modified fixed-sample staining method. J Immunoassay Immunochem. 2015;36(2):149–61.

CAS  PubMed  Article  Google Scholar 

Garcia YJ, Rodríguez-Malaver AJ, Peñaloza N. Lipid peroxidation measurement by thiobarbituric acid assay in rat cerebellar slices. J Neurosci Methods. 2005;144(1):127–35.

CAS  PubMed  Article  Google Scholar 

Maideen NMP. Antidiabetic activity of Nigella sativa (black seeds) and its active constituent (Thymoquinone): a review of human and experimental animal studies. Chonnam Med J. 2021;57(3):169–75.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ghiasi R, Ghadiri Soufi F, Somi MH, Mohaddes G, Mirzaie Bavil F, Naderi R, Alipour MR. Swim training improves HOMA-IR in type 2 diabetes induced by high fat diet and low dose of streptozotocin in male rats. Adv Pharm Bull. 2015;5(3):379–84.

PubMed  PubMed Central  Article  Google Scholar 

Cacho J, Sevillano J, de Castro J, Herrera E, Ramos MP. Validation of simple indexes to assess insulin sensitivity during pregnancy in Wistar and Sprague-Dawley rats. Am J Physiol Endocrinol Metab. 2008;295(5):E1269-1276.

CAS  PubMed  Article  Google Scholar 

Dalli M, Bekkouch O, Azizi SE, Azghar A, Gseyra N, Kim B. Nigella sativa L. phytochemistry and pharmacological activities: a review (2019–2021). Biomolecules. 2021;12(1):20.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Yang Y, Bai T, Yao YL, Zhang DQ, Wu YL, Lian LH, Nan JX. Upregulation of SIRT1-AMPK by thymoquinone in hepatic stellate cells ameliorates liver injury. Toxicol Lett. 2016;262:80–91.

CAS  PubMed  Article  Google Scholar 

Abdelmeguid NE, Fakhoury R, Kamal SM, Al Wafai RJ. Effects of Nigella sativa and thymoquinone on biochemical and subcellular changes in pancreatic β-cells of streptozotocin-induced diabetic rats. J Diabetes. 2010;2(4):256–66.

CAS  PubMed  Article  Google Scholar 

El-Shemi AG, Kensara OA, Alsaegh A, Mukhtar MH. Pharmacotherapy with thymoquinone improved pancreatic β-cell integrity and functional activity, enhanced islets revascularization, and alleviated metabolic and hepato-renal disturbances in streptozotocin-induced diabetes in rats. Pharmacology. 2018;101(1–2):9–21.

留言 (0)

沒有登入
gif