Excitation energy transfer and vibronic coherence in intact phycobilisomes

Gantt, E. Phycobilisomes: light-harvesting pigment complexes. Bioscience 25, 781–788 (1975).

CAS  Article  Google Scholar 

Glazer, A. N. Light harvesting by phycobilisomes. Annu. Rev. Biophys. Biophys. Chem. 14, 47–77 (1985).

CAS  PubMed  Article  Google Scholar 

Adir, N. Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth. Res. 85, 15–32 (2005).

CAS  PubMed  Article  Google Scholar 

David, L., Marx, A. & Adir, N. High-resolution crystal structures of trimeric and rod phycocyanin. J. Mol. Biol. 405, 201–213 (2011).

CAS  PubMed  Article  Google Scholar 

Liu, H. et al. Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. Science 342, 1104–1107 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

van Stokkum, I. H. M. et al. A functional compartmental model of the Synechocystis PCC 6803 phycobilisome. Photosynth. Res. 135, 87–102 (2018).

PubMed  Article  CAS  Google Scholar 

Tian, L. et al. Picosecond kinetics of light harvesting and photoprotective quenching in wild-type and mutant phycobilisomes isolated from the cyanobacterium Synechocystis PCC 6803. Biophys. J. 102, 1692–1700 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sauer, K. & Scheer, H. Excitation transfer in C-phycocyanin. Förster transfer rate and exciton calculations based on new crystal structure data for C-phycocyanins from Agmenellum quadruplicatum and Mastigocladus laminosus. Biochim. Biophys. Acta 936, 157–170 (1988).

CAS  Article  Google Scholar 

Debreczeny, M. P., Sauer, K., Zhou, J. & Bryant, D. A. Comparison of calculated and experimentally resolved rate constants for excitation energy transfer in C-phycocyanin. 2. Trimers. J. Phys. Chem. 99, 8420–8431 (1995).

CAS  Article  Google Scholar 

Beljonne, D., Curutchet, C., Scholes, G. D. & Silbey, R. J. Beyond Förster resonance energy transfer in biological and nanoscale systems. J. Phys. Chem. B 113, 6583–6599 (2009).

CAS  PubMed  Article  Google Scholar 

Riter, R. E., Edington, M. D. & Beck, W. F. Isolated-chromophore and exciton-state photophysics in C-phycocyanin trimers. J. Phys. Chem. B 101, 2366–2371 (1997).

CAS  Article  Google Scholar 

Homoelle, B. J., Edington, M. D., Diffey, W. M. & Beck, W. F. Stimulated photon-echo and transient-grating studies of protein-matrix solvation dynamics and interexciton-state radiationless decay in α phycocyanin and allophycocyanin. J. Phys. Chem. B 102, 3044–3052 (1998).

CAS  Article  Google Scholar 

Womick, J. M. & Moran, A. M. Exciton coherence and energy transport in the light-harvesting dimers of allophycocyanin. J. Phys. Chem. B 113, 15747–15759 (2009).

CAS  PubMed  Article  Google Scholar 

Womick, J. M. & Moran, A. M. Nature of excited states and relaxation mechanisms in C-phycocyanin. J. Phys. Chem. B 113, 15771–15782 (2009).

CAS  PubMed  Article  Google Scholar 

Womick, J. M., Liu, H. & Moran, A. M. Exciton delocalization and energy transport mechanisms in R-phycoerythrin. J. Phys. Chem. A 115, 2471–2482 (2011).

CAS  PubMed  Article  Google Scholar 

Theiss, C. et al. Excitation energy transfer in intact cells and in the phycobiliprotein antennae of the chlorophyll d containing cyanobacterium Acaryochloris marina. J. Plant Physiol. 168, 1473–1487 (2011).

CAS  PubMed  Article  Google Scholar 

Nganou, C., David, L., Adir, N. & Mkandawire, M. Linker proteins enable ultrafast excitation energy transfer in the phycobilisome antenna system of Thermosynechococcus vulcanus. Photochem. Photobiol. Sci. 15, 31–44 (2016).

CAS  PubMed  Article  Google Scholar 

Fălămaș, A., Porav, S. A. & Tosa, V. Investigations of the energy transfer in the phycobilisome antenna of Arthrospira platensis using femtosecond spectroscopy. NATO Adv. Sci. Inst. Ser. E Appl. Sci. 10, 4045 (2020).

Google Scholar 

Zheng, L. et al. Structural insight into the mechanism of energy transfer in cyanobacterial phycobilisomes. Nat. Commun. 12, 5497 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhang, J. et al. Structure of phycobilisome from the red alga Griffithsia pacifica. Nature 551, 57–63 (2017).

PubMed  Article  CAS  Google Scholar 

Ma, J. et al. Structural basis of energy transfer in Porphyridium purpureum phycobilisome. Nature 579, 146–151 (2020).

CAS  PubMed  Article  Google Scholar 

Jonas, D. M. Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003).

CAS  PubMed  Article  Google Scholar 

Li, H., Bristow, A. D., Siemens, M. E., Moody, G. & Cundiff, S. T. Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy. Nat. Commun. 4, 1390 (2013).

PubMed  Article  CAS  Google Scholar 

van Stokkum, I. H. M., Larsen, D. S. & van Grondelle, R. Global and target analysis of time-resolved spectra. Biochim. Biophys. Acta 1657, 82–104 (2004).

PubMed  Article  CAS  Google Scholar 

Tian, L. et al. Site, rate and mechanism of photoprotective quenching in cyanobacteria. J. Am. Chem. Soc. 133, 18304–18311 (2011).

CAS  PubMed  Article  Google Scholar 

Krüger, T. P. J., van Grondelle, R. & Gwizdala, M. The role of far-red spectral states in the energy regulation of phycobilisomes. Biochim. Biophys. Acta Bioenerg. 1860, 341–349 (2019).

PubMed  Article  CAS  Google Scholar 

Wahadoszamen, M., Krüger, T. P. J., Ara, A. M., van Grondelle, R. & Gwizdala, M. Charge transfer states in phycobilisomes. Biochim. Biophys. Acta Bioenerg. 1861, 148187 (2020).

CAS  PubMed  Article  Google Scholar 

Edington, M. D., Riter, R. E. & Beck, W. F. Interexciton-state relaxation and exciton localization in allophycocyanin trimers. J. Phys. Chem. 100, 14206–14217 (1996).

CAS  Article  Google Scholar 

Cheng, Y.-C. & Fleming, G. R. Coherence quantum beats in two-dimensional electronic spectroscopy. J. Phys. Chem. A 112, 4254–4260 (2008).

CAS  PubMed  Article  Google Scholar 

Ginsberg, N. S., Cheng, Y.-C. & Fleming, G. R. Two-dimensional electronic spectroscopy of molecular aggregates. Acc. Chem. Res. 42, 1352–1363 (2009).

CAS  PubMed  Article  Google Scholar 

Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010).

CAS  PubMed  Article  Google Scholar 

Butkus, V., Zigmantas, D., Valkunas, L. & Abramavicius, D. Vibrational vs. electronic coherences in 2D spectrum of molecular systems. Chem. Phys. Lett. 545, 40–43 (2012).

CAS  Article  Google Scholar 

Duan, H.-G. et al. Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer. Proc. Natl Acad. Sci. USA 114, 8493–8498 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tiwari, V., Peters, W. K. & Jonas, D. M. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl Acad. Sci. USA 110, 1203–1208 (2013).

CAS  PubMed  Article  Google Scholar 

Butkus, V. et al. Discrimination of diverse coherences allows identification of electronic transitions of a molecular nanoring. J. Phys. Chem. Lett. 8, 2344–2349 (2017).

CAS  PubMed  Article  Google Scholar 

Kneip, C., Hildebrandt, P., Németh, K., Mark, F. & Schaffner, K. Interpretation of the resonance Raman spectra of linear tetrapyrroles based on DFT calculations. Chem. Phys. Lett. 311, 479–484 (1999).

CAS  Article  Google Scholar 

Kneip, C. et al. Protonation state and structural changes of the tetrapyrrole chromophore during the Pr → Pfr phototransformation of phytochrome: a resonance Raman spectroscopic study. Biochemistry 38, 15185–15192 (1999).

CAS  PubMed  Article  Google Scholar 

Andel, F. III et al. Probing the photoreaction mechanism of phytochrome through analysis of resonance Raman vibrational spectra of recombinant analogues. Biochemistry 39, 2667–2676 (2000).

CAS  PubMed  Article  Google Scholar 

Dasgupta, J., Frontiera, R. R., Taylor, K. C., Lagarias, J. C. & Mathies, R. A. Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy. Proc. Natl Acad. Sci. USA 106, 1784–1789 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Osoegawa, S. et al. Identification of the deprotonated pyrrole nitrogen of the bilin-based photoreceptor by Raman spectroscopy with an advanced computational analysis. J. Phys. Chem. B 123, 3242–3247 (2019).

CAS  PubMed 

留言 (0)

沒有登入
gif