Anthropometric study using three-dimensional pelvic CT scan in sex determination among adult Indonesian population

Geographically and genetically isolated human groups were the sources of matric sex determination. One of them was based on display population-specific skeletal characteristics. Many of which are evident in the relative expression and magnitude of sexually dimorphic features [15, 16]. In fact, each population has its special identification standard. Implementing visual or morphological techniques is the quick way to assess the samples. The weakness of this technique is in the sense of a very subjective assessment which requires an experienced observers or assessors and the level of accuracy is not guaranteed. Moreover, sexual dimorphism varies geographically. Therefore, forensic anthropologists are constantly trying to test the existing methods and developing standards that are more efficient and objective in which it can optimize the positive identification of the human skeleton. Numerous attempts at metric classification have been published, but often require complex or time-consuming measurements. However, while nonmetric methods are a quick means of assessment, they tend to be extremely subjective [15,16,17,18,19].

This study demonstrated the importance of an objective method utilizing radiological technology in human anthropometric determination in order to assist the analysis of sex determination. Medical image data provide the opportunity for high-end forensic analysis to be conducted outside the usual confines of traditional anthropological procedures. Imaging modalities, e.g., CT, are extensively used in the diagnosis and treatment of patients in a clinical setting. Murail and his colleagues have developed a database called Probabilistic Sex Diagnosis (DSP: Diagnose Sexuelle Probabiliste) in 2005, a sex determination method based on a worldwide hip bone metrical database. CT scans of bones were then analyzed to obtain three-dimensional (3D) virtual models then importing the models into a customized software program. CT scan imaging of the above dry bones was performed to obtain three-dimensional (3D) virtual models. 3D models were obtained using a commercial software (Amira) allowing semi-automatic segmentation [6, 20].

This study utilized medical image data from a 16-slice CT scanner. The speed of CT and its ability were applied to demonstrate bony features without the need for soft tissue removal, in the extent to make it an ideal modality to reduce time evaluation and could avoid physical manipulation. The virtual model of the pelvis can be analyzed out of contact with the actual bone. Therefore, the speed of the resulting virtual bone model and measurements make this method a practical alternative to traditional analyses [1,2,3, 10,11,12, 21, 22]. This study was undertaken to investigate whether three-dimensional (3D) volumetric virtual models can be used in the estimation of sex from the pelvis and if they can, whether “metricizing” nonmetric sex estimation traits in the pelvis and utilizing current medicine indices will increase the accuracy and reliability of the data over current methods [3, 4, 10, 12, 23, 24].

As a matter of fact, Asia consists of many countries and ethnics. This extent could result in many variations of body size. Unfortunately, the anthropometric studies that had been published more likely discuss the coverage of European, North American, and African population. Only few studies portrayed the characteristic data of Asians. In this study, the population of the eastern part of Indonesia is expected to be a population representing the pelvic shape of the Indonesian population.

The mean age of sample in this study was 50.23 ± 14.36 years. Moreover, in a study conducted by Kolesova et al., the pelvic size difference was associated with changes in age. Age-related changes observed in the study were carried out in linear parameters of pelvic cavity and confirmed the anterior tilt of sacral floor as well as more horizontal sacrum location relating to aging. This study also showed that there was no change in pelvic proportion to ischial height in female, while the distance of transverse pelvic diameter shortens with age [21]. As it is stated previously, age-related ankylotic processes decreased sacroiliac joint motility and facilitated these changes [22, 23, 25].

There were significant differences (p < 0.05) on radiologic components measured between males and females except for transverse diameter of the sacral segment (p = 0.180). These significant difference finding was similar to other studies in different populations which there were significant differences in pelvic measurements between the sexes [4, 25]. In a study by Patriquin et al., they demonstrated significant sexual dysmorphism in a population study on South Africa. This study reported differences in pelvic size between sexes as well as differences between races [25].

Furthermore, this study showed a significant difference in APOD measurement between male and female groups. This result was in accordance to a study conducted by Kolesova and Vetra that there was significant difference in APOD measurements of the two sexes [26]. The result obtained from our study provided a lower mean of APOD value than their study, but it was similar in the sense of APOD value for males due to the fact that it had lower mean than females. The measurement of CPID component in this study showed a higher value in female group.

In previous literature, male pelvic structure is significantly heavier and thicker than females. The male pelvis is also adjusted to fit in more massive and sturdy body architecture, e.g., the male acetabulum has been designed to fit a larger femur. Even though most of pelvic sexual dimorphisms are due to size differences, sex-related shape variations are also very striking and cannot be considered an allometric difference in body size between both sexes [27]. This variation in shape was indicated by a rounder frame of female pelvis. Sciatic indentation was wider in the sense of females. They have larger, shallower, lower, bigger pelvis and larger pelvic inlet and outlet (pubic bone is longer and curvature degree of pectineal line is greater). Therefore, women’s pelvic bones also differ in characteristics related to sacroiliac joint position on the iliac bones [28].

The SPA measurement showed a significant difference between male and female groups with high correlation strength. This result was in accordance to previous studies which concluded that SPA was the most reliable indicator of pelvic sex [29]. This was also in accordance to a study by Igbigbi and Msamati, who stated that the accuracy of SPA dimensions in determining sex was 94.7% for females and 95.5% for males [30]. Moreover, a similar result was also portrayed in a study by Mostafa, which showed a significant difference in SPA measurements between both sexes [24]. Women’s growths tend to increase during adolescence, especially in ischium and pubic areas, resulting in a larger pelvic outlet, longer pubic, and a blunter SPA. This growth difference was related to sexual dimorphism associated with birth process [31, 32].

The TPO measurement showed a significant difference in both sexes with high strength of correlation between male and female groups. These findings were in accordance to previous studies which concluded that a significant difference was observed in transverse diameter of pelvic midplane and outlet. This could be explained by hormonal effects of pregnancy which result in pubic symphysis softening and pubic bone movement as wide as 1 cm, as a consequence there was an increase on pelvic diameter [24, 26, 31, 32]. Females tend to exhibit an increase in growth during the adolescent growth phase in the region of the pubis and ischium, which results in a longer pubis, a larger pelvic outlet, and a more obtuse subpubic angle. These differences in growth are related to the sexual dimorphism between males and females associated with parturition [31].

The significant differences in the radiological components of the pelvis measured in this study have desirable value in determining sex; however, we believed that using all components of the pelvic measurement as a sex-determining formula for the human skeleton is an inefficient concept. Therefore, the correlation strength test was carried out with the ETA test where it was seen that the variables had higher power than the others. The APOD, CPID, LIH, SPA, and TPO were conducted through multivariate analysis using logistic regression in order to find significant variables and generate a formula that might determine a person’s sex with high accuracy [32]. The CPID, LIH, and SPA components showed significant values in accordance to previous discussion. These three components consistently showed differences in sexual dimorphism in both sexes, especially SPA served as one of the high scoring factors consistently. The APOD, CPID, LIH, SPA, and TPO were conducted through multivariate analysis using logistic regression in order to find significant variables and generate a formula that might determine a person’s sex with high accuracy [32]. The CPID, LIH, and SPA components showed significant values in accordance to previous discussion. These three components consistently showed differences in sexual dimorphism in both sexes, especially SPA served as one of the high scoring factors consistently. This formula was able to provide a high overall validity (91.05% accuracy) with 100% sensitivity for male identification and 81.1% specificity for female identification. Nevertheless, these results need to be compared with previous studies in which they were able to provide higher validity values that could reach 100% [3, 24]. This study showed that the estimated values of pelvic measurements using 3D-CT could give birth to a pelvic model with a formula that has a high accuracy value using CPID, LIH, and SPA values. These specific radiometric parameter obtained from this study has a positive impact for analyzing and describing the pelvic shape and size among male and female group population.

This study had some limitations in the extent of a complete and intact pelvis CT data; however, in some instance, the actual case remains that have been examined in the anthropological setting are incomplete or fragmented pelvic bone. Furthermore, the important aspect by taking advantage 3D software that could reconstruct the bone fragmentation in virtual space and the anthropometric measurement is highly possible to deliver in determining the human sex. Multicentric studies were needed to obtain a greater variety of data and produce more accurate data and formulas. In addition, an analytical study of previously published studies could compare differences in pelvic anthropometric values from different races and geographic areas.

留言 (0)

沒有登入
gif