Affinity-based isolation of extracellular vesicles and the effects on downstream molecular analysis

Couch Y, Buzàs EI, Vizio DD, Gho YS, Harrison P, Hill AF, et al. A brief history of nearly EV-erything – the rise and rise of extracellular vesicles. J Extracell Vesicles. 2021;10(14):e12144-n/a. https://doi.org/10.1002/jev2.12144.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Guo S-C, Tao S-C, Dawn H. Microfluidics-based on-a-chip systems for isolating and analysing extracellular vesicles. J Extracell Vesicles. 2018;7(1):1508271-n/a. https://doi.org/10.1080/20013078.2018.1508271.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. Isolation of extracellular vesicles: general methodologies and latest trends. BioMed Res Int. 2018;2018:8545347–27. https://doi.org/10.1155/2018/8545347.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2(1):20360-n/a. https://doi.org/10.3402/jev.v2i0.20360.

CAS  Article  Google Scholar 

Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2013;2(1):20389-n/a. https://doi.org/10.3402/jev.v2i0.20389.

Article  Google Scholar 

Tamkovich SN, Tutanov OS, Laktionov PP. Exosomes: Generation, structure, transport, biological activity, and diagnostic application. Biochem (Biokhimiya) Suppl Ser A Membr Cell Biol. 2016;10(3):163–73. https://doi.org/10.1134/S1990747816020112.

Article  Google Scholar 

van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 2012;64(3):676–705. https://doi.org/10.1124/pr.112.005983.

CAS  Article  PubMed  Google Scholar 

Greening DW, Xu R, Gopal SK, Rai A, Simpson RJ. Proteomic insights into extracellular vesicle biology - defining exosomes and shed microvesicles. Expert Rev Proteomics. 2017;14(1):69–95. https://doi.org/10.1080/14789450.2017.1260450.

CAS  Article  PubMed  Google Scholar 

Marcoux G, Magron A, Sut C, Laroche A, Laradi S, Hamzeh-Cognasse H, et al. Platelet-derived extracellular vesicles convey mitochondrial DAMPs in platelet concentrates and their levels are associated with adverse reactions. Transfusion (Philadelphia, Pa). 2019;59(7):2403–14. https://doi.org/10.1111/trf.15300.

CAS  Article  Google Scholar 

Caby M-P, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol. 2005;17(7):879–87. https://doi.org/10.1093/intimm/dxh267.

CAS  Article  PubMed  Google Scholar 

Keller S, Ridinger J, Rupp A-K, Janssen JWG, Altevogt P. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med. 2011;9(1):86. https://doi.org/10.1186/1479-5876-9-86.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Street JM, Barran PE, Mackay CL, Weidt S, Balmforth C, Walsh TS, et al. Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Transl Med. 2012;10(1):5. https://doi.org/10.1186/1479-5876-10-5.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Raj DAA, Fiume I, Capasso G, Pocsfalvi G. A multiplex quantitative proteomics strategy for protein biomarker studies in urinary exosomes. Kidney Int. 2012;81(12):1263–72. https://doi.org/10.1038/ki.2012.25.

CAS  Article  PubMed  Google Scholar 

Kilchert C, Wittmann S, Vasiljeva L. The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol. 2016;17(4):227–39. https://doi.org/10.1038/nrm.2015.15.

CAS  Article  PubMed  Google Scholar 

Tran PHL, Wang T, Yin W, Tran TTD, Barua HT, Zhang Y, et al. Development of a nanoamorphous exosomal delivery system as an effective biological platform for improved encapsulation of hydrophobic drugs. Int J Pharm. 2019;566:697–707. https://doi.org/10.1016/j.ijpharm.2019.06.028.

CAS  Article  PubMed  Google Scholar 

Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, et al. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles. 2015;4(1):30087-n/a. https://doi.org/10.3402/jev.v4.30087.

CAS  Article  PubMed  Google Scholar 

Yang D, Zhang W, Zhang H, Zhang F, Chen L, Ma L, et al. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics. 2020;10(8):3684–707. https://doi.org/10.7150/thno.41580.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2013;35(7):2383–90. https://doi.org/10.1016/j.biomaterials.2013.11.083.

CAS  Article  PubMed  Google Scholar 

Szatanek R, Baran J, Siedlar M, Baj-Krzyworzeka M. Isolation of extracellular vesicles: Determining the correct approach (Review). Int J Mol Med. 2015;36(1):11–7. https://doi.org/10.3892/ijmm.2015.2194.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Song Z, Mao J, Barrero RA, Wang P, Zhang F, Wang T. Development of a CD63 aptamer for efficient cancer immunochemistry and immunoaffinity-based exosome isolation. Molecules (Basel, Switzerland). 2020;25(23):5585. https://doi.org/10.3390/molecules25235585.

CAS  Article  Google Scholar 

Shao H, Chung J, Balaj L, Charest A, Bigner DD, Carter BS, et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med. 2012;18(12):1835–40. https://doi.org/10.1038/nm.2994.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature (London). 2015;523(7559):177-U82. https://doi.org/10.1038/nature14581.

CAS  Article  Google Scholar 

Contreras-Naranjo JC, Wu H-J, Ugaz VM. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip. 2017;17(21):3558–77. https://doi.org/10.1039/c7lc00592j.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gutierrez Garcia G, Galicia Garcia G, Zalapa Soto J, Izquierdo Medina A, Rotzinger-Rodriguez M, Casas Aguilar GA, et al. Analysis of RNA yield in extracellular vesicles isolated by membrane affinity column and differential ultracentrifugation. PloS One. 2020;15(11):e0238545-e. https://doi.org/10.1371/journal.pone.0238545.

CAS  Article  Google Scholar 

Tian Y, Gong M, Hu Y, Liu H, Zhang W, Zhang M, et al. Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. J Extracell Vesicles. 2020;9(1):1697028-n/a. https://doi.org/10.1080/20013078.2019.1697028.

CAS  Article  PubMed  Google Scholar 

Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics. 2017;7(3):789–804. https://doi.org/10.7150/thno.18133.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Proteomic Profiling. 2015;179–209. https://doi.org/10.1007/978-1-4939-2550-6_15.

Shu SL, Yang Y, Allen CL, Hurley E, Tung KH, Minderman H, et al. Purity and yield of melanoma exosomes are dependent on isolation method. J Extracell Vesicles. 2020;9(1):1692401-n/a. https://doi.org/10.1080/20013078.2019.1692401.

CAS  Article  PubMed  Google Scholar 

Gardiner C, Vizio DD, Sahoo S, Théry C, Witwer KW, Wauben M, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles. 2016;5(1):32945-n/a. https://doi.org/10.3402/jev.v5.32945.

CAS  Article  PubMed  Google Scholar 

Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;30(1):3.22.1-3.9. https://doi.org/10.1002/0471143030.cb0322s30.

Article  Google Scholar 

Jeppesen DK, Hvam ML, Primdahl-Bengtson B, Boysen AT, Whitehead B, Dyrskjøt L, et al. Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles. 2014;3(1):25011-n/a. https://doi.org/10.3402/jev.v3.25011.

Article  PubMed  Google Scholar 

Ismail N, Wang Y, Dakhlallah D, Moldovan L, Agarwal K, Batte K, et al. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood. 2013;121(6):984–95. https://doi.org/10.1182/blood-2011-08-374793.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mol EA, Goumans M-J, Doevendans PA, Sluijter JPG, Vader P. Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Nanomedicine. 2017;13(6):2061–5. https://doi.org/10.1016/j.nano.2017.03.011.

CAS  Article  PubMed  Google Scholar 

Nordin JZMD, Lee YB, Vader PP, Mäger IP, Johansson HJP, Heusermann WP, et al. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine. 2015;11(4):879–83. https://doi.org/10.1016/j.nano.2015.01.003.

CAS  Article  PubMed  Google Scholar 

Taylor DD, Shah S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods (San Diego, Calif). 2015;87:3–10. https://doi.org/10.1016/j.ymeth.2015.02.019.

CAS  Article  Google Scholar 

Gamez-Valero A, Monguio-Tortajada M, Carreras-Planella L, Marcel-la F, Beyer K, Borras FE. Size-exclusion chromatography-based isolation minimally alters extracellular vesicles’ characteristics compared to precipitating agents. Sci Rep. 2016;6(1):33641. https://doi.org/10.1038/srep33641.

CAS 

留言 (0)

沒有登入
gif