Systemic Therapy Approaches for Breast Cancer Brain and Leptomeningeal Metastases

Arvold ND, Oh KS, Niemierko A, Taghian AG, Lin NU, Abi-Raad RF, et al. Brain metastases after breast-conserving therapy and systemic therapy: incidence and characteristics by biologic subtype. Breast Cancer Res Treat. 2012;136(1):153–60. https://doi.org/10.1007/s10549-012-2243-x.

Article  PubMed  Google Scholar 

Darlix A, Louvel G, Fraisse J, Jacot W, Brain E, Debled M, et al. Impact of breast cancer molecular subtypes on the incidence, kinetics and prognosis of central nervous system metastases in a large multicentre real-life cohort. Br J Cancer. 2019;121(12):991–1000. https://doi.org/10.1038/s41416-019-0619-y.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kim YJ, Kim JS, Kim IA. Molecular subtype predicts incidence and prognosis of brain metastasis from breast cancer in SEER database. J Cancer Res Clin Oncol. 2018;144(9):1803–16. https://doi.org/10.1007/s00432-018-2697-2.

CAS  Article  PubMed  Google Scholar 

Deeken JF, Loscher W. The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clinical cancer research : an official journal of the American Association for Cancer Research. 2007;13(6):1663–74. https://doi.org/10.1158/1078-0432.CCR-06-2854.

CAS  Article  Google Scholar 

Brastianos PK, Carter SL, Santagata S, Cahill DP, Taylor-Weiner A, Jones RT, et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 2015;5(11):1164–77. https://doi.org/10.1158/2159-8290.CD-15-0369.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cosgrove N, Vareslija D, Keelan S, Elangovan A, Atkinson JM, Cocchiglia S, et al. Mapping molecular subtype specific alterations in breast cancer brain metastases identifies clinically relevant vulnerabilities. Nat Commun. 2022;13(1):514.

CAS  Article  Google Scholar 

Vogelbaum MA, Brown PD, Messersmith H, Brastianos PK, Burri S, Cahill D, et al. Treatment for brain metastases: ASCO-SNO-ASTRO guideline. J Clin Oncol. 2022;40(5):492–516. https://doi.org/10.1200/JCO.21.02314.

CAS  Article  PubMed  Google Scholar 

Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. The New England journal of medicine. 2006;355(26):2733–43. https://doi.org/10.1056/NEJMoa064320.

CAS  Article  PubMed  Google Scholar 

Lin NU, Dieras V, Paul D, Lossignol D, Christodoulou C, Stemmler HJ, et al. Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009;15(4):1452–9. https://doi.org/10.1158/1078-0432.CCR-08-1080.

CAS  Article  Google Scholar 

Bachelot T, Romieu G, Campone M, Dieras V, Cropet C, Dalenc F, et al. Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): a single-group phase 2 study. The Lancet Oncology. 2013;14(1):64–71. This is a prospective trial showing the clinical benefit of lapatinib plus capecitabine in patients with HER2+ breast cancer with brain metastasis. https://doi.org/10.1016/S1470-2045(12)70432-1.

CAS  Article  PubMed  Google Scholar 

Rabindran SK, Discafani CM, Rosfjord EC, Baxter M, Floyd MB, Golas J, et al. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res. 2004;64(11):3958–65. https://doi.org/10.1158/0008-5472.CAN-03-2868.

CAS  Article  PubMed  Google Scholar 

Freedman RA, Gelman RS, Anders CK, Melisko ME, Parsons HA, Cropp AM, et al. TBCRC 022: a phase ii trial of neratinib and capecitabine for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases. J Clin Oncol. 2019;37(13):1081–9. This is the first prospective trial showing intracranial activity of neratinib plus capecitabine in patients with HER2+ breast cancer with brain metastasis. https://doi.org/10.1200/JCO.18.01511.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Saura C, Oliveira M, Feng YH, Dai MS, Chen SW, Hurvitz SA, et al. Neratinib plus capecitabine versus lapatinib plus capecitabine in HER2-positive metastatic breast cancer previously treated with >/= 2 HER2-directed regimens: phase III NALA trial. J Clin Oncol. 2020;38(27):3138–49. https://doi.org/10.1200/JCO.20.00147.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hurvitz SA, Saura C, Oliveira M, Trudeau ME, Moy B, Delaloge S, et al. Efficacy of neratinib plus capecitabine in the subgroup of patients with central nervous system involvement from the NALA trial. Oncologist. 2021;26(8):e1327–e38. https://doi.org/10.1002/onco.13830.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Pheneger T, Bouhana K, Anderson D, Garrus J, Ahrendt K, Allen S, et al. Abstract #1795: in vitro and in vivo activity of ARRY-380: a potent, small molecule inhibitor of ErbB2. Cancer Research. 2009;69(9_Supplement):1795.

Google Scholar 

Murthy RK, Loi S, Okines A, Paplomata E, Hamilton E, Hurvitz SA, et al. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. The New England journal of medicine. 2020;382(7):597–609. https://doi.org/10.1056/NEJMoa1914609.

CAS  Article  PubMed  Google Scholar 

Curigliano G, Mueller V, Borges V, Hamilton E, Hurvitz S, Loi S, et al. Tucatinib versus placebo added to trastuzumab and capecitabine for patients with pretreated HER2+ metastatic breast cancer with and without brain metastases (HER2CLIMB): final overall survival analysis. Annals of oncology : official journal of the European Society for Medical Oncology. 2022;33(3):321–9. https://doi.org/10.1016/j.annonc.2021.12.005.

CAS  Article  Google Scholar 

Lin NU, Murthy RK, Abramson V, Anders C, Bachelot T, Bedard P, et al. Abstract PD4-04: updated results of tucatinib vs placebo added to trastuzumab and capecitabine for patients with previously treated HER2-positive metastatic breast cancer with brain metastases (HER2CLIMB). Cancer Research. 2022;82(4_Supplement):PD4-04-PD4 This analysis from the landmark HER2CLIMB trial has established the clinical benefit and intracranial activity of a tucatinib-based regimen in not only stable/treated HER2+ breast cancer brain metastasis but also progressing brain metastasis.

Google Scholar 

Li X, Yang C, Wan H, Zhang G, Feng J, Zhang L, et al. Discovery and development of pyrotinib: a novel irreversible EGFR/HER2 dual tyrosine kinase inhibitor with favorable safety profiles for the treatment of breast cancer. Eur J Pharm Sci. 2017;110:51–61. https://doi.org/10.1016/j.ejps.2017.01.021.

CAS  Article  PubMed  Google Scholar 

Xu B, Yan M, Ma F, Hu X, Feng J, Ouyang Q, et al. Pyrotinib plus capecitabine versus lapatinib plus capecitabine for the treatment of HER2-positive metastatic breast cancer (PHOEBE): a multicentre, open-label, randomised, controlled, phase 3 trial. The Lancet Oncology. 2021;22(3):351–60. https://doi.org/10.1016/S1470-2045(20)30702-6.

CAS  Article  PubMed  Google Scholar 

Xu B, Yan M, Ma F, Hu X, Feng J, Ouyang Q, et al. Pyrotinib plus capecitabine versus lapatinib plus capecitabine for the treatment of HER2-positive metastatic breast cancer (PHOEBE): a multicentre, open-label, randomised, controlled, phase 3 trial. The Lancet Oncology. 2021;22(3):351–60. https://doi.org/10.1016/S1470-2045(20)30702-6.

CAS  Article  PubMed  Google Scholar 

Yan M, Ouyang Q, Sun T, Niu L, Yang J, Li L, et al. Pyrotinib plus capecitabine for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases (PERMEATE): a multicentre, single-arm, two-cohort, phase 2 trial. The Lancet Oncology. 2022;23(3):353–61. https://doi.org/10.1016/S1470-2045(21)00716-6.

CAS  Article  PubMed  Google Scholar 

Dijkers EC, Oude Munnink TH, Kosterink JG, Brouwers AH, Jager PL, de Jong JR, et al. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clinical Pharmacology & Therapeutics. 2010;87(5):586–92. https://doi.org/10.1038/clpt.2010.12.

CAS  Article  Google Scholar 

Dijkers E, MNL-d H, Kosterink JG, Jager PL, Brouwers AH, Perk LR, et al. Characterization of 89Zr-trastuzumab for clinical HER2 immunoPET imaging. Journal of Clinical Oncology. 2007;25(18_suppl):3508. https://doi.org/10.1200/jco.2007.25.18_suppl.3508.

Article  Google Scholar 

Stemmler HJ, Schmitt M, Willems A, Bernhard H, Harbeck N, Heinemann V. Ratio of trastuzumab levels in serum and cerebrospinal fluid is altered in HER2-positive breast cancer patients with brain metastases and impairment of blood-brain barrier. Anticancer Drugs. 2007;18(1):23–8. https://doi.org/10.1097/01.cad.0000236313.50833.ee.

CAS  Article  PubMed  Google Scholar 

Baculi RH, Suki S, Nisbett J, Leeds N, Groves M. Meningeal carcinomatosis from breast carcinoma responsive to trastuzumab. J Clin Oncol. 2001;19(13):3297–8. https://doi.org/10.1200/JCO.2001.19.13.3297.

CAS  Article  PubMed  Google Scholar 

Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. The New England journal of medicine. 2012;367(19):1783–91. https://doi.org/10.1056/NEJMoa1209124.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Montemurro F, Delaloge S, Barrios CH, Wuerstlein R, Anton A, Brain E, et al. Trastuzumab emtansine (T-DM1) in patients with HER2-positive metastatic breast cancer and brain metastases: exploratory final analysis of cohort 1 from KAMILLA, a single-arm phase IIIb clinical trial(). Annals of oncology : official journal of the European Society for Medical Oncology. 2020;31(10):1350–8. This analysis from the KAMILLA trial demonstrated intracranial activity of T-DM1 in HER2+ breast cancer brain metastasis. https://doi.org/10.1016/j.annonc.2020.06.020.

CAS  Article  Google Scholar 

Cortes J, Kim SB, Chung WP, Im SA, Park YH, Hegg R, et al. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. The New England journal of medicine. 2022;386(12):1143–54. https://doi.org/10.1056/NEJMoa2115022.

CAS  Article  PubMed  Google Scholar 

Hurvitz S, Kim S-B, Chung W-P, Im S-A, Park YH, Hegg R, et al. Abstract GS3-01: trastuzumab deruxtecan (T-DXd; DS-8201a) vs. trastuzumab emtansine (T-DM1) in patients (pts) with HER2+ metastatic breast cancer (mBC): subgroup analyses from the randomized phase 3 study DESTINY-Breast03. Cancer Research. 2022;82(4_Supplement):GS3-01-GS3 This result from the DESTINY-Breast03 trial has shown remarkable intracranial activity of T-DXd in HER2+ breast cancer brain metastasis (stable/treated).

Google Scholar 

Lin NU, Borges V, Anders C, Murthy RK, Paplomata E, Hamilton E, et al. Intracranial efficacy and survival with tucatinib plus trastuzumab and capecitabine for previously treated HER2-positive breast cancer with brain metastases in the HER2CLIMB trial. J Clin Oncol. 2020:JCO2000775.

Kabraji S, Ni J, Sammons S, Van Swearingen AE, Wang Y, Pereslete AM, et al. Abstract PD4-05: preclinical and clinical efficacy of trastuzumab deruxtecan in breast cancer brain metastases (BCBM). Cancer Research. 2022;82(4_Supplement):PD4-05-PD4.

Article  Google Scholar 

Bartsch R, Berghoff AS, Furtner J, Marhold M, Bergen ES, Roider-Schur S, et al. 165MO trastuzumab-deruxtecan (T-DXd) in HER2-positive breast cancer patients (pts) with active brain metastases: primary outcome analysis from the TUXEDO-1 trial. Annals of Oncology. 2022;33:S198. https://doi.org/10.1016/j.annonc.2022.03.184.

Article  Google Scholar 

Rosner D, Nemoto T, Lane WW. Chemotherapy induces regression of brain metastases in breast carcinoma. Cancer. 1986;58(4):832–9. https://doi.org/10.1002/1097-0142(19860815)58:4<832::AID-CNCR2820580404>3.0.CO;2-W.

CAS  Article  PubMed  Google Scholar 

Boogerd W, Dalesio O, Bais EM, Vandersande JJ. Response of brain metastases from breast-cancer to systemic chemotherapy. Cancer. 1992;69(4):972–80. https://doi.org/10.1002/1097-0142(19920215)69:4<972::AID-CNCR2820690423>3.0.CO;2-P.

CAS 

留言 (0)

沒有登入
gif