Synthesis, biological evaluation, and bioinformatics analysis of indole analogs on AChE and GST activities

Mathew B, Parambi DG, Mathew GE, Uddin MS, Inasu ST, Kim H, et al. Emerging therapeutic potentials of dual‐acting MAO and AChE inhibitors in Alzheimer’s and Parkinson’s diseases. Arch Pharm. 2019;352:1900177. https://doi.org/10.1002/ardp.201900177.

CAS  Article  Google Scholar 

Li H, Su YS, He W, Zhang JB, Zhang Q, Jing XH, et al. The nonneuronal cholinergic system in the colon: a comprehensive review. FASEB J. 2022;36:e22165. https://doi.org/10.1096/fj.202101529R.

CAS  Article  PubMed  Google Scholar 

Taslimi P, Caglayan C, Gulcin İ. The impact of some natural phenolic compounds on carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase enzymes: An antidiabetic, anticholinergic, and antiepileptic study. J Biochem Mol Toxicol. 2017;31:e21995. https://doi.org/10.1002/jbt.21995.

Article  Google Scholar 

Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K, et al. Muscle and neuronal nicotinic acetylcholine receptors: structure, function and pathogenicity. FEBS J. 2007;274:3799–845. https://doi.org/10.1111/j.1742-4658.2007.05935.x.

CAS  Article  PubMed  Google Scholar 

Backos DS, Franklin CC, Reigan P. The role of glutathione in brain tumor drug resistance. Biochem Pharm. 2012;83:1005–12. https://doi.org/10.1016/j.bcp.2011.11.016.

CAS  Article  PubMed  Google Scholar 

Jefferies H, Coster J, Khalil A, Bot J, McCauley RD, Hall JC. Glutathione. ANZ J Surg. 2003;73:517–22. https://doi.org/10.1046/j.1445-1433.2003.02682.x.

Article  PubMed  Google Scholar 

Türkeş C, Demir Y, Beydemir Ş. Infection medications: assessment in‐vitro glutathione S‐Transferase inhibition and molecular docking study. ChemistrySelect. 2021;6:11915–24. https://doi.org/10.1002/slct.202103197.

Article  Google Scholar 

Csermely P, Korcsmáros T, Kiss HJ, London G, Nussinov R. Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharm Ther. 2013;138:333–408. https://doi.org/10.1016/j.pharmthera.2013.01.016.

CAS  Article  Google Scholar 

Anderson AC. The process of structure-based drug design. Chem Biol. 2003;10:787–97. https://doi.org/10.1016/j.chembiol.2003.09.002.

CAS  Article  PubMed  Google Scholar 

Cetin A, Bursal E, Türkan F. 2-methylindole analogs as cholinesterases and glutathione S-transferase inhibitors: Synthesis, biological evaluation, molecular docking, and pharmacokinetic studies. Arab J Chem. 2021;14:103449. https://doi.org/10.1016/j.arabjc.2021.103449.

CAS  Article  Google Scholar 

Suzen S. Recent studies and biological aspects of substantial indole derivatives with anti-cancer activity. Curr Org Chem. 2017;21:2068–76.

CAS  Google Scholar 

Singh TP, Singh OM. Recent progress in biological activities of indole and indole alkaloids. Mini Rev Med Chem. 2018;18:9–25.

CAS  Article  Google Scholar 

Abele E, Abele R, Dzenitis O, Lukevics E. Indole and Isatin Oximes: synthesis, reactions, and biological activity. (Review). Chem Hetro Comp. 2003;39:3–35. https://doi.org/10.1023/A:1023008422464.

CAS  Article  Google Scholar 

Suzen S, Cihaner SS, Coban T. Synthesis and comparison of antioxidant properties of Indole‐based melatonin analogue Indole amino acid derivatives. Chem Biol Drug Des. 2012;79:76–83. https://doi.org/10.1111/j.1747-0285.2011.01216.x.

CAS  Article  PubMed  Google Scholar 

Mistry B, Keum YS, Kim DH. Synthesis, antioxidant and anticancer screenings of berberine-indole conjugates. Res Chem Intermed. 2016;42:3241–56. https://doi.org/10.1007/s11164-015-2208-x.

CAS  Article  Google Scholar 

Bozorov K, Zhao J, Aisa HA. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: a recent overview. Bioorg Med Chem. 2019;27:3511–31. https://doi.org/10.1016/j.bmc.2019.07.005.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Das A, Greco G, Kumar S, Catanzaro E, Morigi R, Locatelli A, et al. Synthesis, in vitro cytotoxicity, molecular docking and ADME study of some indolin-2-one linked 1, 2, 3-triazole derivatives. Comput Biol Chem. 2022;97:107641. https://doi.org/10.1016/j.compbiolchem.2022.107641.

CAS  Article  PubMed  Google Scholar 

Agalave SG, Maujan SR, Pore VS. Click chemistry: 1, 2, 3‐triazoles as pharmacophores. Asian J Chem. 2011;6:2696–718. https://doi.org/10.1002/asia.201100432.

CAS  Article  Google Scholar 

Narsimha S, Kumar NS, Swamy BK, Reddy NV, Hussain SA, Rao MS. Indole-2-carboxylic acid derived mono and bis 1,4-disubstituted 1,2,3-triazoles: Synthesis, characterization and evaluation of anticancer, antibacterial, and DNA-cleavage activities. Bioorg Med Chem Lett. 2016;26:1639–44. https://doi.org/10.1016/j.bmcl.2016.01.055.

CAS  Article  PubMed  Google Scholar 

Jasiewicz B, Kozanecka-Okupnik W, Przygodzki M, Warżajtis B, Rychlewska U, Pospieszny T, et al. Synthesis, antioxidant and cytoprotective activity evaluation of C-3 substituted indole derivatives. Sci Rep. 2021;11:1–14. https://doi.org/10.1038/s41598-021-94904-z.

Article  Google Scholar 

Goyal D, Kaur A, Goyal B. Benzofuran and indole: promising scaffolds for drug development in Alzheimer’s disease. Chem Med Chem. 2018;13:1275–99. https://doi.org/10.1002/cmdc.201800156.

CAS  Article  PubMed  Google Scholar 

Lan TT, Anh DT, Dung DTM, Huong LTT, Park EJ, Jeon HW, et al. Design, synthesis, and bioevaluation of novel oxoindolin-2-one derivatives incorporating 1-benzyl-1H-1,2,3-triazole. Med Chem Res. 2020;29:396–408. https://doi.org/10.1007/s00044-019-02488-1.

CAS  Article  Google Scholar 

Sepehri N, Asemanipoor N, Mousavianfard SA, Hoseini S, Faramarzi MA, Adib M, et al. New acridine-9-carboxamide linked to 1,2,3-triazole-N-phenylacetamide derivatives as potent α-glucosidase inhibitors: design, synthesis, in vitro, and in silico biological evaluations. Med Chem Res. 2020;29:1836–45. https://doi.org/10.1007/s00044-020-02603-7.

CAS  Article  Google Scholar 

Hein JE, Fokin VV. Copper-catalyzed azide–alkynecycloaddition (CuAAC) and beyond: new reactivity of copper(i) acetylides. Chem Soc Rev. 2010;39:1302–15. https://doi.org/10.1039/B904091A.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Meldal M, Tornøe CW. Cu-Catalyzed Azide-Alkyne Cycloaddition. Chem Rev. 2008;108:2952–3015. https://doi.org/10.1021/cr0783479.

CAS  Article  PubMed  Google Scholar 

Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew Chem Int Ed. 2002;114:2708–11.

Article  Google Scholar 

Worrell BT, Malik JA, Fokin VV. Direct evidence of a dinuclear copper intermediate in Cu (I)-catalyzed azide-alkyne cycloadditions. Science. 2013;340:457–60. https://doi.org/10.1126/science.1229506.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cetin A, Türkan F, Bursal E, Murahari M. Synthesis, characterization, enzyme inhibitory activity, and molecular docking analysis of a new series of Thiophene-based Heterocyclic compounds. Russ J Org Chem. 2021;57:598–604. https://doi.org/10.1134/S107042802104014X.

CAS  Article  Google Scholar 

Aras A, Türkan F, Yildiko U, Atalar MN, Kılıç Ö, Alma MH, et al. Biochemical constituent, enzyme inhibitory activity, and molecular docking analysis of an endemic plant species, Thymus migricus. Chem Pap. 2021;75:1133–46. https://doi.org/10.1007/s11696-020-01375-z.

CAS  Article  Google Scholar 

Güller P. The in vitro and in silico inhibition mechanism of glutathione reductase by resorcinol derivatives: a molecular docking study. J Mol Struct. 2021;1228:129790. https://doi.org/10.1016/j.molstruc.2020.129790.

Article  Google Scholar 

Zhang MZ, Chen Q, Yang GF. A review on recent developments of indole-containing antiviral agents. Eur J Med Chem. 2015;89:421–41. https://doi.org/10.1016/j.ejmech.2014.10.065.

CAS  Article  PubMed  Google Scholar 

Kanwal KKM, Chigurupati S, Ali F, Younus M, Aldubayan M, Perveen S. Indole-3-acetamides: as potential antihyperglycemic and antioxidant agents; synthesis, in vitro α-amylase inhibitory activity, structure–activity relationship, and in silico studies. ACS Omega. 2021;6:2264–75. https://doi.org/10.1021/acsomega.0c05581.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sravanthi TV, Manju SL. Indoles-A promising scaffold for drug development. Eur J Pharm Sci. 2016;91:1–10. https://doi.org/10.1016/j.ejps.2016.05.025.

CAS  Article  PubMed  Google Scholar 

Fraczek T, Siwek A, Paneth P. Assessing molecular docking tools for relative biological activity prediction: a case study of Triazole HIV-1 NNRTIs. J Chem Inf Model. 2013;53:3326–42. https://doi.org/10.1021/ci400427a.

CAS  Article  PubMed  Google Scholar 

Cetin A. In silico studies on stilbenolignan analogues as SARS-CoV-2 Mpro inhibitors. Chem Phys Lett. 2021;771:138563. https://doi.org/10.1016/j.cplett.2021.138563.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Schmidt AM, Eilbracht P. Tandem hydroformylation-hydrazone formation-Fischer indole synthesis: a novel approach to tryptamides. Org Biomol Chem. 2005;3:2333–43. https://doi.org/10.1039/B503396A.

CAS  Article  PubMed  Google Scholar 

Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharm. 1961;7:88–95.

CAS  Article  Google Scholar 

Habig WH, Pabst MJ, Jakoby WB. J Biol Chem. 1974;249:7130–39. https://doi.org/10.1016/S0021-9258(19)42083-8.

CAS  Article  PubMed  Google Scholar 

Bhakta HK, Park CH, Yokozawa T, Min BS, Jung HA, Choi JS. Kinetics and molecular docking studies of loganin, morroniside and 7-O-galloyl-d-sedoheptulose derived from Corni fructus as cholinesterase and

留言 (0)

沒有登入
gif