Cardiovascular positron emission tomography: established and emerging role in cardiovascular diseases

Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA (1975) A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 114:89–98

CAS  PubMed  Article  Google Scholar 

Gaemperli O, Kaufmann PA (2011) PET and PET/CT in cardiovascular disease. Ann N Y Acad Sci 1228:109–136

CAS  PubMed  Article  Google Scholar 

Townsend DW (2008) Positron emission tomography/computed tomography. Semin Nucl Med 38:152–166

PubMed  Article  Google Scholar 

Robson PM, Dey D, Newby DE et al (2017) MR/PET imaging of the cardiovascular system. JACC Cardiovasc Imaging 10:1165–1179

PubMed  PubMed Central  Article  Google Scholar 

Klein C, Nekolla SG, Bengel FM et al (2002) Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 105:162–167

PubMed  Article  Google Scholar 

Schwitter J, DeMarco T, Kneifel S et al (2000) Magnetic resonance-based assessment of global coronary flow and flow reserve and its relation to left ventricular functional parameters: a comparison with positron emission tomography. Circulation 101:2696–2702

CAS  PubMed  Article  Google Scholar 

Boyd DP (2007) Instrumentation and principles of CT. In: Di Carli MF, Lipton MJ (eds) Cardiac PET and PET/CT Imaging. Springer, New York, pp 19–33

Chapter  Google Scholar 

Slart R, Glaudemans A, Gheysens O et al (2021) Procedural recommendations of cardiac PET/CT imaging: standardization in inflammatory-, infective-, infiltrative-, and innervation (4Is)-related cardiovascular diseases: a joint collaboration of the EACVI and the EANM. Eur J Nucl Med Mol Imaging 48:1016–1039

PubMed  Article  Google Scholar 

Araujo LI, Lammertsma AA, Rhodes CG et al (1991) Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation 83:875–885

CAS  PubMed  Article  Google Scholar 

Schelbert HR, Phelps ME, Hoffman EJ, Huang SC, Selin CE, Kuhl DE (1979) Regional myocardial perfusion assessed with N-13 labeled ammonia and positron emission computerized axial tomography. Am J Cardiol 43:209–218

CAS  PubMed  Article  Google Scholar 

Herrero P, Markham J, Shelton ME, Weinheimer CJ, Bergmann SR (1990) Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography. Exploration of a mathematical model Circulation 82:1377–1386

CAS  PubMed  Google Scholar 

Nekolla SG, Reder S, Saraste A et al (2009) Evaluation of the novel myocardial perfusion positron-emission tomography tracer 18F-BMS-747158-02: comparison to 13N-ammonia and validation with microspheres in a pig model. Circulation 119:2333–2342

CAS  PubMed  Article  Google Scholar 

Maddahi J, Czernin J, Lazewatsky J et al (2011) Phase I, first-in-human study of BMS747158, a novel 18F-labeled tracer for myocardial perfusion PET: dosimetry, biodistribution, safety, and imaging characteristics after a single injection at rest. J Nucl Med 52:1490–1498

CAS  PubMed  Article  Google Scholar 

Veltman CE, de Wit-van der Veen BJ, de Roos A, Schuijf JD et al (2013) Myocardial perfusion imaging: the role of SPECT, PET and CMR. In: Marzullo P, Mariani G, eds. From Basic Cardiac Imaging to Image Fusion: Core Competencies Versus Technological Progress. Milan: Springer; 2013:29–49.

Yoshida K, Mullani N, Gould KL (1996) Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med 37:1701–1712

CAS  PubMed  Google Scholar 

Lecomte R (2004) Technology challenges in small animal PET imaging. Nucl Instrum Methods Phys Res A 527:157–165

CAS  Article  Google Scholar 

Yoshinaga K, Klein R, Tamaki N (2010) Generator-produced rubidium-82 positron emission tomography myocardial perfusion imaging-From basic aspects to clinical applications. J Cardiol 55:163–173

PubMed  Article  Google Scholar 

Yu M, Guaraldi MT, Mistry M et al (2007) BMS-747158-02: a novel PET myocardial perfusion imaging agent. J Nucl Cardiol 14:789–798

CAS  PubMed  Article  Google Scholar 

Krivokapich J, Huang SC, Selin CE, Phelps ME (1987) Fluorodeoxyglucose rate constants, lumped constant, and glucose metabolic rate in rabbit heart. Am J Physiol 252:H777-787

CAS  PubMed  Google Scholar 

Kazakauskaite E, Zaliaduonyte-Peksiene D, Rumbinaite E, Kersulis J, Kulakiene I, Jurkevicius R (2018) Positron emission tomography in the diagnosis and management of coronary artery disease. Medicina (Kaunas) 54:47

Article  Google Scholar 

Al Badarin FJ, Malhotra S (2019) Diagnosis and prognosis of coronary artery disease with SPECT and PET. Curr Cardiol Rep 21:57

PubMed  Article  Google Scholar 

Schindler TH, Zhang XL, Vincenti G, Mhiri L, Lerch R, Schelbert HR (2007) Role of PET in the evaluation and understanding of coronary physiology. J Nucl Cardiol 14:589–603

PubMed  PubMed Central  Article  Google Scholar 

Camici PG, Crea F (2007) Coronary microvascular dysfunction. N Engl J Med 356:830–840

CAS  PubMed  Article  Google Scholar 

Schindler TH, Facta AD, Prior JO et al (2009) Structural alterations of the coronary arterial wall are associated with myocardial flow heterogeneity in type 2 diabetes mellitus. Eur J Nucl Med Mol Imaging 36:219–229

PubMed  Article  Google Scholar 

Shaw LJ, Min JK, Hachamovitch R et al (2010) Cardiovascular imaging research at the crossroads. JACC Cardiovasc Imaging 3:316–324

PubMed  Article  Google Scholar 

Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF (2007) Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: a 82Rb PET/CT study. J Nucl Med 48:349–358

PubMed  Google Scholar 

Lertsburapa K, Ahlberg AW, Bateman TM et al (2008) Independent and incremental prognostic value of left ventricular ejection fraction determined by stress gated rubidium 82 PET imaging in patients with known or suspected coronary artery disease. J Nucl Cardiol 15:745–753

PubMed  Article  Google Scholar 

Berman DS, Kang X, Slomka PJ et al (2007) Underestimation of extent of ischemia by gated SPECT myocardial perfusion imaging in patients with left main coronary artery disease. J Nucl Cardiol 14:521–528

PubMed  Article  Google Scholar 

Gould KL (2009) Coronary flow reserve and pharmacologic stress perfusion imaging: beginnings and evolution. JACC Cardiovasc Imaging 2:664–669

PubMed  Article  Google Scholar 

Tio RA, Dabeshlim A, Siebelink HM et al (2009) Comparison between the prognostic value of left ventricular function and myocardial perfusion reserve in patients with ischemic heart disease. J Nucl Med 50:214–219

PubMed  Article  Google Scholar 

Dayanikli F, Grambow D, Muzik O, Mosca L, Rubenfire M, Schwaiger M (1994) Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation 90:808–817

CAS  PubMed  Article  Google Scholar 

Adenaw N, Salerno M (2013) PET/MRI: current state of the art and future potential for cardiovascular applications. J Nucl Cardiol 20:976–989

PubMed  Article  Google Scholar 

Valenta I, Quercioli A, Schindler TH (2014) Diagnostic value of PET-measured longitudinal flow gradient for the identification of coronary artery disease. JACC Cardiovasc Imaging 7:387–396

PubMed  Article  Google Scholar 

Schneider JF, Thomas HE Jr, Sorlie P, Kreger BE, McNamara PM, Kannel WB (1981) Comparative features of newly acquired left and right bundle branch block in the general population: the Framingham study. Am J Cardiol 47:931–940

CAS  PubMed  Article  Google Scholar 

Vernooy K, Verbeek XA, Peschar M et al (2005) Left bundle branch block induces ventricular remodelling and functional septal hypoperfusion. Eur Heart J 26:91–98

PubMed  Article  Google Scholar 

Hayat SA, Dwivedi G, Jacobsen A, Lim TK, Kinsey C, Senior R (2008) Effects of left bundle-branch block on cardiac structure, function, perfusion, and perfusion reserve: implications for myocardial contrast echocardiography versus radionuclide perfusion imaging for the detection of coronary artery disease. Circulation 117:1832–1841

CAS  PubMed  Article  Google Scholar 

Hoefflinghaus T, Husmann L, Valenta I et al (2008) Role of attenuation correction to discriminate defects caused by left bundle branch block versus coronary stenosis in single photon emission computed tomography myocardial perfusion imaging. Clin Nucl Med 33:748–751

PubMed  Article  Google Scholar 

Vaduganathan P, He ZX, Raghavan C, Mahmarian JJ, Verani MS (1996) Detection of left anterior descending coronary artery stenosis in patients with left bundle branch block: exercise, adenosine or dobutamine imaging? J Am Coll Cardiol 28:543–550

CAS  PubMed  Article  Google Scholar 

Falcao A, Chalela W, Giorgi MC et al (2015) Myocardial blood flow assessment with 82rubidium-PET imaging in patients with left bundle branch block. Clinics (Sao Paulo) 70:726–732

Article  Google Scholar 

Ghotbi AA, Kjaer A, Hasbak P (2014) Review: comparison of PET rubidium-82 with conventional SPECT myocardial perfusion imaging. Clin Physiol Funct Imaging 34:163–170

CAS  PubMed  Article  Google Scholar 

Cremer P, Brunken R, Menon V, Cerqueira M, Jaber W (2015) Septal perfusion abnormalities are common in regadenoson spect myocardial perfusion imaging (MPI) but Not PET MPI in patients with left bundle branch block (LBBB) [abstract]. J Am Coll Cardiol 65:A1148

Article  Google Scholar 

Vidula MK, Wiener P, Selvaraj S et al (2021) Diagnostic accuracy of SPECT and PET myocardial perfusion imaging in patients with left bundle branch block or ventricular-paced rhythm. J Nucl Cardiol 28:981–988

PubMed  Article 

留言 (0)

沒有登入
gif