Immune dysregulation associated with co-occurring germline CBL and SH2B3 variants

Martinelli S, De Luca A, Stellacci E, Rossi C, Checquolo S, Lepri F, et al. Heterozygous germline mutations in the CBL tumor-suppressor gene cause a noonan syndrome-like phenotype. Am J Hum Genet. 2010;87:250–7. https://doi.org/10.1016/j.ajhg.2010.06.015.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Schmidt MHH, Dikic I. The Cbl interactome and its functions. Nat Rev Mol Cell Biol. 2005;6:907–18.

CAS  PubMed  Article  Google Scholar 

Martinelli S, Stellacci E, Pannone L, D’Agostino D, Consoli F, Lissewski C, et al. Molecular diversity and associated phenotypic spectrum of germline CBL mutations. Hum Mutat. 2015;36:787–96.

CAS  PubMed  Article  Google Scholar 

Pérez B, Mechinaud F, Galambrun C, Ben Romdhane N, Isidor B, Philip N, et al. Germline mutations of the CBL gene define a new genetic syndrome with predisposition to juvenile myelomonocytic leukaemia. J Med Genet. 2010;47:686–91.

PubMed  Article  CAS  Google Scholar 

Tartaglia M, Gelb BD. Disorders of dysregulated signal traffic through the RAS-MAPK pathway: phenotypic spectrum and molecular mechanisms. Ann NY Acad Sci. 2010;1214:99–121.

CAS  PubMed  Article  Google Scholar 

Niemeyer CM, Kang MW, Shin DH, Furlan I, Erlacher M, Bunin NJ, Bunda S, Finklestein JZ, Sakamoto KM, Gorr TA, Mehta P. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic Leukemia. Nat Genet. 2010;42(9):794–800.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Loh ML, Sakai DS, Flotho C, Kang M, Fliegauf M, Archambeault S, et al. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood. 2009;114:1859–63.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Masetti R, Vendemini F, Zama D, Biagi C, Pession A, Locatelli F. Acute myeloid leukemia in infants: biology and treatment. Front Pediatr. https://doi.org/10.3389/fped.2015.00037

Article  PubMed  PubMed Central  Google Scholar 

Strullu M, Caye A, Cassinat B, Fenneteau O, Touzot F, Blauwblomme T, et al. In hematopoietic cells with a germline mutation of CBL, loss of heterozygosity is not a signature of juvenile myelo-monocytic leukemia. Leukemia. 2013;27(12):2404–7. https://doi.org/10.1038/leu.2013.203.

CAS  Article  PubMed  Google Scholar 

Guey S, Grangeon L, Brunelle F, Bergametti F, Amiel J, Lyonnet S, et al. De novo mutations in CBL causing early-onset paediatric moyamoya angiopathy. J Med Genet. 2017;54:550–7.

CAS  PubMed  Article  Google Scholar 

Cortellazzo Wiel L, Pastore S, Taddio A, Tommasini A. A case of uveitis in a patient with juvenile myelomonocytic leukemia successfully treated with adalimumab. J Pediatr Hematol Oncol. 2020;42:e373–6.

PubMed  Article  Google Scholar 

Ali AM, Cooper J, Walker A, Jones D, Saad A. Adult‐onset acute myeloid leukaemia in a patient with germline mutation of CBL. Br J Haematol. 2021;192(3):665–7. https://doi.org/10.1111/bjh.17234.

Article  PubMed  Google Scholar 

Thien CBF, Dagger SA, Steer JH, Koentgen F, Jansen ES, Scott CL, et al. c-Cbl promotes T cell receptor-induced thymocyte apoptosis by activating the phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem. 2010;285(14):10969–81. https://doi.org/10.1074/jbc.M109.094920.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kitaura Y, Jang IK, Wang Y, Han YC, Inazu T, Cadera EJ, et al. Control of the B cell-intrinsic tolerance programs by ubiquitin ligases Cbl and Cbl-b. Immunity. 2007;26:567–78.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Naramura M, Jang I-K, Kole H, Huang F, Haines D, Gu H. c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation. Nat Immunol. 2002;3:1192–9.

CAS  PubMed  Article  Google Scholar 

Lyle CL, Belghasem M, Chitalia VC. c-Cbl: an important regulator and a target in angiogenesis and tumorigenesis. Cells. 2019;8:498.

CAS  PubMed Central  Article  Google Scholar 

Morris R, Butler L, Perkins A, Kershaw NJ, Babon JJ. The role of LNK (SH2B3) in the regulation of JAK-STAT signalling in haematopoiesis. Pharmaceuticals (Basel). 2021;15(1):24.

Article  CAS  Google Scholar 

Devallire J, Charreau B. The adaptor Lnk (SH2B3): an emerging regulator in vascular cells and a link between immune and inflammatory signaling. Biochem Pharmacol. 2011;82:1391–402.

Article  CAS  Google Scholar 

Maslah N, Cassinat B, Verger E, Kiladjian JJ, Velazquez L. The role of LNK/SH2B3 genetic alterations in myeloproliferative neoplasms and other hematological disorders. Leukemia Nat Publish Group. 2017;31:1661–70.

CAS  Google Scholar 

Coltro G, Lasho TL, Finke CM, Gangat N, Pardanani A, Tefferi A, et al. Germline SH2B3 pathogenic variant associated with myelodysplastic syndrome/myeloproliferative neoplasm with ring sideroblasts and thrombocytosis. Am J Hematol. 2019;94:E231–4.

PubMed  Article  Google Scholar 

Perez-Garcia A, Ambesi-Impiombato A, Hadler M, Rigo I, LeDuc CA, Kelly K, et al. Genetic loss of SH2B3 in acute lymphoblastic leukemia. Blood. 2013;122:2425–32.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lavrikova EY, Nikitin AG, Kuraeva TL, Peterkova VA, Tsitlidze NM, Chistiakov DA, et al. The carriage of the type 1 diabetes-associated R262W variant of human LNK correlates with increased proliferation of peripheral blood monocytes in diabetic patients. Pediatr Diabetes. 2011;12:127–32.

CAS  PubMed  Article  Google Scholar 

Leardini D, Messelodi D, Muratore E, Baccelli F, Bertuccio SN, Anselmi L, et al. Role of CBL mutations in cancer and non-malignant phenotype. Cancers. 2022;14(3):839. https://doi.org/10.3390/cancers14030839.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Niemeyer CM, Aricó M, Basso G, Biondi A, Cantú Rajnoldi A, Creutzig U, et al. Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. Blood. 1997;89:3534–43.

CAS  PubMed  Google Scholar 

Oliveira JB, Bleesing JJ, Dianzani U, Fleisher TA, Jaffe ES, Lenardo MJ, et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood. 2010;116:35–40.

Article  CAS  Google Scholar 

Li H, Tsokos GC. Double-negative T cells in autoimmune diseases. Curr Opin Rheumatol. 2021;33:163–72.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Russell TB, Kurre P. Double-negative T cells are non-ALPS-specific markers of immune dysregulation found in patients with aplastic anemia. Blood. 2010;116:5072–3.

CAS  PubMed  Article  Google Scholar 

Steenholt JV, Nielsen C, Baudewijn L, Staal A, Rasmussen KS, Sabir HJ, et al. The composition of T cell subtypes in duodenal biopsies are altered in coeliac disease patients. PLoS One. 2017;12:e0170270.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Oliveira JB, Bidère N, Niemela JE, Zheng L, Sakai K, Nix CP, et al. NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc Natl Acad Sci USA. 2007;104:8953–8.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Takagi MM, Shinoda K, Piao J, Mitsuiki N, Takagi MM, Matsuda K, et al. Autoimmune lymphoproliferative syndrome-like disease with somatic KRAS mutation. Blood Am Soc Hematol. 2011;117:2887–90. https://doi.org/10.1182/blood-2010-08-301515.

CAS  Article  Google Scholar 

Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell Elsevier. 2017;170:17–33.

CAS  Google Scholar 

Calvo KR, Price S, Braylan RC, Oliveira JB, Lenardo M, Fleisher TA, et al. JMML and RALD (Ras-associated autoimmune leukoproliferative disorder): common genetic etiology yet clinically distinct entities. Blood. 2015;125:2753–8.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Neven Q, Boulanger C, Bruwier A, de Ville M, de Goyet I, Meyts LM, et al. Clinical spectrum of ras-associated autoimmune leukoproliferative disorder (RALD). J Clin Immunol. 2020;41(1):51–8. https://doi.org/10.1007/s10875-020-00883-7.

Article  PubMed  Google Scholar 

Li P, Huang P, Yang Y, Hao M, Peng H, Li F. Updated understanding of autoimmune lymphoproliferative syndrome (ALPS). Clin Rev Allergy Immunol. 2016;50:55–63.

CAS  PubMed  Article  Google Scholar 

Koren-Michowitz M, Gery S, Tabayashi T, Lin D, Alvarez R, Nagler A, et al. SH2B3 (LNK) mutations from myeloproliferative neoplasms patients have mild loss of function against wild type JAK2 and JAK2 V617F. Br J Haematol. 2013;161:811–20.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Morales CE, Stieglitz E, Kogan SC, Loh ML, Braun BS. Nf1 and Sh2b3 mutations cooperate in vivo in a mouse model of juvenile myelomonocytic leukemia. Blood Adv. 2021;5:3587–91.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet. 2007;39:857–64.

留言 (0)

沒有登入
gif