Mechanisms of the intestinal and urinary microbiome in kidney stone disease

Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Malla, M. A. et al. Exploring the human microbiome: the potential future role of next-generation sequencing in disease diagnosis and treatment. Front. Immunol. 9, 2868 (2018).

CAS  PubMed  Article  Google Scholar 

NIH Human Microbiome Portfolio Analysis Team. A review of 10 years of human microbiome research activities at the US National Institutes of Health, fiscal years 2007–2016. Microbiome 7, 31 (2019).

Article  Google Scholar 

Clarke, G. et al. Minireview: gut microbiota: the neglected endocrine organ. Mol. Endocrinol. 28, 1221–1238 (2014).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Oliphant, K. & Allen-Vercoe, E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome 7, 91 (2019).

PubMed  PubMed Central  Article  Google Scholar 

Fulde, M. & Hornef, M. W. Maturation of the enteric mucosal innate immune system during the postnatal period. Immunol. Rev. 260, 21–34 (2014).

CAS  PubMed  Article  Google Scholar 

Kamada, N., Chen, G. Y., Inohara, N. & Nunez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 14, 685–690 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ijssennagger, N. et al. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc. Natl Acad. Sci. USA 112, 10038–10043 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Reinhardt, C. et al. Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature 483, 627–631 (2012).

CAS  PubMed  Article  Google Scholar 

Neuman, H., Debelius, J. W., Knight, R. & Koren, O. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol. Rev. 39, 509–521 (2015).

PubMed  Article  Google Scholar 

Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Canfora, E. E., Jocken, J. W. & Blaak, E. E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11, 577–591 (2015).

CAS  PubMed  Article  Google Scholar 

Tuddenham, S. & Sears, C. L. The intestinal microbiome and health. Curr. Opin. Infect. Dis. 28, 464–470 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).

CAS  PubMed  Article  Google Scholar 

Durack, J. & Lynch, S. V. The gut microbiome: relationships with disease and opportunities for therapy. J. Exp. Med. 216, 20–40 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Schirmer, M. et al. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat. Microbiol. 3, 337–346 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fujimura, K. E. & Lynch, S. V. Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe 17, 592–602 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

CAS  PubMed  Article  Google Scholar 

Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

PubMed  Article  Google Scholar 

Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5, e9085 (2010).

Article  CAS  Google Scholar 

Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

CAS  PubMed  Article  Google Scholar 

Marin, I. A. et al. Microbiota alteration is associated with the development of stress-induced despair behavior. Sci. Rep. 7, 43859 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Kang, D. W. et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5, 10 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Clapp, M. et al. Gut microbiota’s effect on mental health: the gut-brain axis. Clin. Pract. 7, 987 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Wilkins, L. J., Monga, M. & Miller, A. W. Defining dysbiosis for a cluster of chronic diseases. Sci. Rep. 9, 1–10 (2019).

Article  CAS  Google Scholar 

Moe, O. W. Kidney stones: pathophysiology and medical management. Lancet 367, 333–344 (2006).

CAS  PubMed  Article  Google Scholar 

Robertson, W. G., Peacock, M., Marshall, R. W., Marshall, D. H. & Nordin, B. C. Saturation-inhibition index as a measure of the risk of calcium oxalate stone formation in the urinary tract. N. Engl. J. Med. 294, 249–252 (1976).

CAS  PubMed  Article  Google Scholar 

Kaufman, D. W. et al. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J. Am. Soc. Nephrol. 19, 1197–1203 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sidhu, H. et al. Absence of Oxalobacter formigenes in cystic fibrosis patients: a risk factor for hyperoxaluria. Lancet 352, 1026–1029 (1998).

CAS  PubMed  Article  Google Scholar 

Kumar, R. et al. Role of Oxalobacter formigenes in calcium oxalate stone disease: a study from North India. Eur. Urol. 41, 318–322 (2002).

CAS  PubMed  Article  Google Scholar 

Duncan, S. H. et al. Oxalobacter formigenes and its potential role in human health. Appl. Environ. Microbiol. 68, 3841–3847 (2002).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Allison, M. J., Dawson, K. A., Mayberry, W. R. & Foss, J. G. Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch. Microbiol. 141, 1–7 (1985).

CAS  PubMed  Article  Google Scholar 

Miller, A. W. & Dearing, D. The metabolic and ecological interactions of oxalate-degrading bacteria in the mammalian gut. Pathogens 2, 636–652 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Campieri, C. et al. Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration. Kidney Int. 60, 1097–1105 (2001).

CAS  PubMed  Article  Google Scholar 

Turroni, S. et al. Oxalate consumption by lactobacilli: evaluation of oxalyl-CoA decarboxylase and formyl-CoA transferase activity in Lactobacillus acidophilus. J. Appl. Microbiol. 103, 1600–1609 (2007).

CAS  PubMed  Article  Google Scholar 

Turroni, S. et al. Oxalate-degrading activity in Bifidobacterium animalis subsp. lactis: impact of acidic conditions on the transcriptional levels of the oxalyl coenzyme A (CoA) decarboxylase and formyl-CoA transferase genes. Appl. Environ. Microbiol. 76, 5609–5620 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Batagello, C. A., Monga, M. & Miller, A. W. Calcium oxalate urolithiasis: a case of missing microbes? J. Endourol. 32, 995–1005 (2018).

留言 (0)

沒有登入
gif