Macrophage-specific inhibition of the histone demethylase JMJD3 decreases STING and pathologic inflammation in diabetic wound repair

Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res. 2009;37:1528–1542. https://doi.org/10.1177/147323000903700531

CAS  Article  PubMed  Google Scholar 

Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99:665–706. https://doi.org/10.1152/physrev.00067.2017

CAS  Article  PubMed  Google Scholar 

Gallagher KA, Joshi A, Carson WF, Schaller M, Allen R, Mukerjee S, et al. Epigenetic changes in bone marrow progenitor cells influence the inflammatory phenotype and alter wound healing in type 2 diabetes. Diabetes. 2015;64:1420–1430. https://doi.org/10.2337/db14-0872

CAS  Article  PubMed  Google Scholar 

Kimball A, Schaller M, Joshi A, Davis FM, denDekker A, Boniakowski A, et al. Ly6C(Hi) blood monocyte/macrophage drive chronic inflammation and impair wound healing in diabetes mellitus. Arterioscler Thromb Vasc Biol. 2018;38:1102–1114. https://doi.org/10.1161/ATVBAHA.118.310703

CAS  Article  PubMed  PubMed Central  Google Scholar 

Boniakowski AE, Kimball AS, Jacobs BN, Kunkel SL, Gallagher KA. Macrophage-mediated inflammation in normal and diabetic wound healing. J Immunol. 2017;199:17–24. https://doi.org/10.4049/jimmunol.1700223

CAS  Article  PubMed  Google Scholar 

Davis FM, Tsoi LC, Melvin WJ, denDekker A, Wasikowski R, Joshi AD, et al. Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms. J Exp Med. 2021;218:1883 https://doi.org/10.1084/jem.20201839

CAS  Article  Google Scholar 

Lagunas-Rangel FA. KDM6B (JMJD3) and its dual role in cancer. Biochimie. 2021;184:63–71. https://doi.org/10.1016/j.biochi.2021.02.005

CAS  Article  PubMed  Google Scholar 

Ding Y, Yao Y, Gong X, Zhuo Q, Chen J, Tian M, et al. JMJD3: a critical epigenetic regulator in stem cell fate. Cell Commun Signal. 2021;19:72 https://doi.org/10.1186/s12964-021-00753-8

CAS  Article  PubMed  PubMed Central  Google Scholar 

Davis FM, denDekker A, Joshi AD, Wolf SJ, Audu C, Melvin WJ, et al. Palmitate-TLR4 signaling regulates the histone demethylase, JMJD3, in macrophages and impairs diabetic wound healing. Eur J Immunol. 2020;50:1929–1940. https://doi.org/10.1002/eji.202048651

CAS  Article  PubMed  PubMed Central  Google Scholar 

Davis, FM, Tsoi LC, Wasikowski R, denDekker A, Joshi A, Wilke C, et al. Epigenetic regulation of the PGE2 pathway modulates macrophage phenotype in normal and pathologic wound repair. JCI Insight. 5 https://doi.org/10.1172/jci.insight.138443 (2020).

Kimball AS, Davis FM, denDekker A, Joshi AD, Schaller MA, Bermick J, et al. The histone methyltransferase setdb2 modulates macrophage phenotype and uric acid production in diabetic wound repair. Immunity. 2019;51:258–271 e255. https://doi.org/10.1016/j.immuni.2019.06.015

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kroetz DN, Allen RM, Schaller MA, Cavallaro C, Ito T, Kunkel SL, et al. Type I interferon induced epigenetic regulation of macrophages suppresses innate and adaptive immunity in acute respiratory viral infection. PLoS Pathog. 2015;11:e1005338 https://doi.org/10.1371/journal.ppat.1005338

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kos CH. Cre/loxP system for generating tissue-specific knockout mouse models. Nutr Rev. 2004;62:243–246. https://doi.org/10.1301/nr2004.jun243-246

Article  PubMed  Google Scholar 

Gurzov EN, Stanley WJ, Pappas EG, Thomas HE, Gough DJ. The JAK/STAT pathway in obesity and diabetes. FEBS J. 2016;283:3002–3015. https://doi.org/10.1111/febs.13709

CAS  Article  PubMed  Google Scholar 

Xin P, Xu X, Deng C, Liu S, Wang Y, Zhou X, et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol. 2020;80:106210 https://doi.org/10.1016/j.intimp.2020.106210

CAS  Article  PubMed  Google Scholar 

Darnell JE Jr., Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264:1415–1421. https://doi.org/10.1126/science.8197455

CAS  Article  PubMed  Google Scholar 

King KR, Aguirre AD, Ye YX, Sun Y, Roh JD, Ng RP, et al. IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nat Med. 2017;23:1481–1487. https://doi.org/10.1038/nm.4428

CAS  Article  PubMed  PubMed Central  Google Scholar 

Murray PJ. The JAK-STAT signaling pathway: input and output integration. J Immunol. 2007;178:2623–2629. https://doi.org/10.4049/jimmunol.178.5.2623

CAS  Article  PubMed  Google Scholar 

Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem. 2007;282:20059–20063. https://doi.org/10.1074/jbc.R700016200

CAS  Article  PubMed  Google Scholar 

Gallagher KA, Liu ZJ, Xiao M, Chen H, Goldstein LJ, Buerk DG, et al. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J Clin Invest. 2007;117:1249–1259. https://doi.org/10.1172/JCI29710

CAS  Article  PubMed  PubMed Central  Google Scholar 

Tschop M, Heiman ML. Overview of rodent models for obesity research. Curr Protoc Neurosci. 2002;Chapter 9:Unit 9 10 https://doi.org/10.1002/0471142301.ns0910s17

Article  PubMed  Google Scholar 

Alzaid F, Julla JB, Diedisheim M, Potier C, Potier L, Velho G, et al. Monocytopenia, monocyte morphological anomalies and hyperinflammation characterise severe COVID-19 in type 2 diabetes. EMBO Mol Med. 2020;12:e13038 https://doi.org/10.15252/emmm.202013038

CAS  Article  PubMed  PubMed Central  Google Scholar 

Melvin, WJ, Audu CO, Davis FM, Sharma SB, Joshi A, DenDekker A, et al. Coronavirus induces diabetic macrophage-mediated inflammation via SETDB2. Proc Natl Acad Sci USA. 118 https://doi.org/10.1073/pnas.2101071118 (2021).

Kumar NP, Sridhar R, Nair D, Banurekha VV, Nutman TB, Babu S. Type 2 diabetes mellitus is associated with altered CD8(+) T and natural killer cell function in pulmonary tuberculosis. Immunology. 2015;144:677–686. https://doi.org/10.1111/imm.12421

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kurauti MA, Costa-Júnior JM, Ferreira SM, Santos GJ, Sponton C, Carneiro EM, et al. Interleukin-6 increases the expression and activity of insulin-degrading enzyme. Sci Rep. 2017;7:46750 https://doi.org/10.1038/srep46750

Article  PubMed  PubMed Central  Google Scholar 

Akbari M, Hassan-Zadeh V. IL-6 signalling pathways and the development of type 2 diabetes. Inflammopharmacology. 2018;26:685–698. https://doi.org/10.1007/s10787-018-0458-0

CAS  Article  PubMed  Google Scholar 

Garbers C, Aparicio-Siegmund S, Rose-John S. The IL-6/gp130/STAT3 signaling axis: recent advances towards specific inhibition. Curr Opin Immunol. 2015;34:75–82. https://doi.org/10.1016/j.coi.2015.02.008

CAS  Article  PubMed  Google Scholar 

Skiniotis G, Boulanger MJ, Garcia KC, Walz T. Signaling conformations of the tall cytokine receptor gp130 when in complex with IL-6 and IL-6 receptor. Nat Struct Mol Biol. 2005;12:545–551. https://doi.org/10.1038/nsmb941

CAS  Article  PubMed  Google Scholar 

Parri E, Kuusanmaki H, van Adrichem AJ, Kaustio M, Wennerberg K. Identification of novel regulators of STAT3 activity. PLoS One. 2020;15:e0230819 https://doi.org/10.1371/journal.pone.0230819

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wolf J, Rose-John S, Garbers C. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine. 2014;70:11–20. https://doi.org/10.1016/j.cyto.2014.05.024

CAS  Article  PubMed  Google Scholar 

Hong SS, Choi JH, Lee SY, Park YH, Park KY, Lee JY, et al. A novel small-molecule inhibitor targeting the IL-6 receptor beta subunit, glycoprotein 130. J Immunol. 2015;195:237–245. https://doi.org/10.4049/jimmunol.1402908

CAS  Article  PubMed  Google Scholar 

Bai J, Cervantes C, He S, He J, Plasko GR, Wen J, et al. Mitochondrial stress-activated cGAS-STING pathway inhibits thermogenic program and contributes to overnutrition-induced obesity in mice. Commun Biol. 2020;3:257 https://doi.org/10.1038/s42003-020-0986-1

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bai J, Cervantes C, Liu J, He S, Zhou H, Zhang B, et al. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway. Proc Natl Acad Sci USA. 2017;114:12196–12201. https://doi.org/10.1073/pnas.1708744114

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mao Y, Luo W, Zhang L, Wu W, Yuan L, Xu H, et al. STING-IRF3 triggers endothelial inflammation in response to free fatty acid-induced mitochondrial damage in diet-induced obesity. Arterioscler Thromb Vasc Biol. 2017;37:920–929. https://doi.org/10.1161/ATVBAHA.117.309017

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gong Y, Li G, Tao J, Wu NN, Kandadi MR, Bi Y, et al. Double knockout of Akt2 and AMPK accentuates high fat diet-induced cardiac anomalies through a cGAS-STING-mediated mechanism. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165855 https://doi.org/10.1016/j.bbadis.2020.165855

CAS  Article  PubMed  Google Scholar 

Bai J, Liu F. The cGAS-cGAMP-STING pathway: a molecular link between immunity and metabolism. Diabetes. 2019;68:1099–1108. https://doi.org/10.2337/dbi18-0052

CAS  Article 

留言 (0)

沒有登入
gif