Profile of chimeric RNAs and TMPRSS2-ERG e2e4 isoform in neuroendocrine prostate cancer

Yamada Y, Beltran H. Clinical and biological features of neuroendocrine prostate cancer. Curr Oncol Rep. 2021;23:15.

PubMed  PubMed Central  Article  Google Scholar 

Epstein JI, Amin MB, Beltran H, Lotan TL, Mosquera JM, Reuter VE, Robinson BD, Troncoso P, Rubin MA. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am J Surg Pathol. 2014;38:756–67.

PubMed  PubMed Central  Article  Google Scholar 

Beltran H, Rickman DS, Park K, Chae SS, Sboner A, MacDonald TY, Wang Y, Sheikh KL, Terry S, Tagawa ST, Dhir R, Nelson JB, de la Taille A, Allory Y, Gerstein MB, Perner S, Pienta KJ, Chinnaiyan AM, Wang Y, Collins CC, Gleave ME, Demichelis F, Nanus DM, Rubin MA. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 2011;1:487–95.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Spetsieris N, Boukovala M, Patsakis G, Alafis I, Efstathiou E. Neuroendocrine and aggressive-variant prostate cancer. Cancers. 2020. https://doi.org/10.3390/cancers12123792.

Article  PubMed  PubMed Central  Google Scholar 

Li Y, He Y, Butler W, Xu L, Chang Y, Lei K, Zhang H, Zhou Y, Gao AC, Zhang Q, Taylor DG, Cheng D, Farber-Katz S, Karam R, Landrith T, Li B, Wu S, Hsuan V, Yang Q, Hu H, Chen X, Flowers M, McCall SJ, Lee JK, Smith BA, Park JW, Goldstein AS, Witte ON, Wang Q, Rettig MB, Armstrong AJ, Cheng Q, Huang J. Targeting cellular heterogeneity with CXCR2 blockade for the treatment of therapy-resistant prostate cancer. Sci Transl Med. 2019. https://doi.org/10.1126/scitranslmed.aax0428.

Article  PubMed  PubMed Central  Google Scholar 

Wang Q, Li Z, Yang J, Peng S, Zhou Q, Yao K, Cai W, Xie Z, Qin F, Li H, Chen X, Li K, Huang H. Loss of NEIL3 activates radiotherapy resistance in the progression of prostate cancer. Cancer biol med. 2021. https://doi.org/10.20892/j.issn.2095-3941.2020.0550.

Article  PubMed  PubMed Central  Google Scholar 

Fléchon A, Pouessel D, Ferlay C, Perol D, Beuzeboc P, Gravis G, Joly F, Oudard S, Deplanque G, Zanetta S, Fargeot P, Priou F, Droz JP, Culine S. Phase II study of carboplatin and etoposide in patients with anaplastic progressive metastatic castration-resistant prostate cancer (mCRPC) with or without neuroendocrine differentiation: results of the French Genito-Urinary Tumor Group (GETUG) P01 trial. Ann Med Oncol. 2011;22:2476–81.

Google Scholar 

Papandreou CN, Daliani DD, Thall PF, Tu SM, Wang X, Reyes A, Troncoso P, Logothetis CJ. Results of a phase II study with doxorubicin, etoposide, and cisplatin in patients with fully characterized small-cell carcinoma of the prostate. J Clin Oncol. 2002;20:3072–80.

PubMed  Article  CAS  Google Scholar 

Wang HT, Yao YH, Li BG, Tang Y, Chang JW, Zhang J. Neuroendocrine Prostate Cancer (NEPC) progressing from conventional prostatic adenocarcinoma: factors associated with time to development of NEPC and survival from NEPC diagnosis-a systematic review and pooled analysis. J Clin Oncol. 2014;32:3383–90.

PubMed  Article  Google Scholar 

Yasumizu Y, Rajabi H, Jin C, Hata T, Pitroda S, Long MD, Hagiwara M, Li W, Hu Q, Liu S, Yamashita N, Fushimi A, Kui L, Samur M, Yamamoto M, Zhang Y, Zhang N, Hong D, Maeda T, Kosaka T, Wong KK, Oya M, Kufe D. MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer. Nat Commun. 2020;11:338.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Lovnicki J, Gan Y, Feng T, Li Y, Xie N, Ho CH, Lee AR, Chen X, Nappi L, Han B, Fazli L, Huang J, Gleave ME, Dong X. LIN28B promotes the development of neuroendocrine prostate cancer. J Clin Investig. 2020;130:5338–48.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Li Z, Qin F, Li H. Chimeric RNAs and their implications in cancer. Curr Opin Genet Dev. 2018;48:36–43.

PubMed  Article  CAS  Google Scholar 

Shi X, Singh S, Lin E, Li H. Chimeric RNAs in cancer. Adv Clin Chem. 2021;100:1–35.

PubMed  Article  Google Scholar 

Wang J, Cai Y, Ren C, Ittmann M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Can Res. 2006;66:8347–51.

Article  CAS  Google Scholar 

Gao Q, Liang WW, Foltz SM, Mutharasu G, Jayasinghe RG, Cao S, Liao WW, Reynolds SM, Wyczalkowski MA, Yao L, Yu L, Sun SQ, Chen K, Lazar AJ, Fields RC, Wendl MC, Van Tine BA, Vij R, Chen F, Nykter M, Shmulevich I, Ding L. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep. 2018;23:227-238.e223.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Kumar-Sinha C, Kalyana-Sundaram S, Chinnaiyan AM. SLC45A3-ELK4 chimera in prostate cancer: spotlight on cis-splicing. Cancer Discov. 2012;2:582–5.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Luo Y, Du L, Yao Z, Liu F, Li K, Li F, Zhu J, Coppes RP, Zhang D, Pan Y, Gao S, H. Zhang, generation and application of inducible chimeric rna astn2-pappa(as) knockin mouse model. Cells. 2022;11(2):277.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Zhu D, Singh S, Chen X, Zheng Z, Huang J, Lin T, Li H. The landscape of chimeric RNAs in bladder urothelial carcinoma. Int J Biochem Cell Biol. 2019;110:50–8.

PubMed  Article  CAS  Google Scholar 

Singh S, Qin F, Kumar S, Elfman J, Lin E, Pham LP, Yang A, Li H. The landscape of chimeric RNAs in non-diseased tissues and cells. Nucleic Acids Res. 2020;48:1764–78.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Wang Q, Wu W, Gao Z, Li K, Peng S, Fan H, Xie Z, Guo Z, Huang H. GADD45B is a potential diagnostic and therapeutic target gene in chemotherapy-resistant prostate cancer. Front Cell Dev Biol. 2021;9:716501.

PubMed  PubMed Central  Article  Google Scholar 

Xie Z, Janczyk P, Zhang Y, Liu A, Shi X, Singh S, Facemire L, Kubow K, Li Z, Jia Y, Schafer D, Mandell JW, Abounader R, Li H. A cytoskeleton regulator AVIL drives tumorigenesis in glioblastoma. Nat Commun. 2020;11:3457.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Qin F, Song Z, Babiceanu M, Song Y, Facemire L, Singh R, Adli M, Li H. Discovery of CTCF-sensitive cis-spliced fusion RNAs between adjacent genes in human prostate cells. PLoS Genet. 2015;11:e1005001.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. 2015;15:701–11.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Karantanos T, Corn PG, Thompson TC. Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene. 2013;32:5501–11.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Aparicio A, Logothetis CJ, Maity SN. Understanding the lethal variant of prostate cancer: power of examining extremes. Cancer Discov. 2011;1:466–8.

PubMed  PubMed Central  Article  Google Scholar 

Wu H, Singh S, Xie Z, Li X, Li H. Landscape characterization of chimeric RNAs in colorectal cancer. Cancer Lett. 2020;489:56–65.

PubMed  Article  CAS  Google Scholar 

Bader DA, McGuire SE. Tumour metabolism and its unique properties in prostate adenocarcinoma, nature reviews. Urology. 2020;17:214–31.

PubMed  Google Scholar 

Xiao H, Wang J, Yan W, Cui Y, Chen Z, Gao X, Wen X, Chen J. GLUT1 regulates cell glycolysis and proliferation in prostate cancer. Prostate. 2018;78:86–94.

PubMed  Article  CAS  Google Scholar 

Stoykova GE, Schlaepfer IR. Lipid metabolism and endocrine resistance in prostate cancer, and new opportunities for therapy. Int J mole sci. 2019;20(11):2626.

Article  CAS  Google Scholar 

Park JW, Lee JK, Sheu KM, Wang L, Balanis NG, Nguyen K, Smith BA, Cheng C, Tsai BL, Cheng D, Huang J, Kurdistani SK, Graeber TG, Witte ON. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science. 2018;362:91–5.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310:644–8.

PubMed  Article  CAS  Google Scholar 

Sandoval GJ, Pulice JL, Pakula H, Schenone M, Takeda DY, Pop M, Boulay G, Williamson KE, McBride MJ, Pan J, St Pierre R, Hartman E, Garraway LA, Carr SA, Rivera MN, Li Z, Ronco L, Hahn WC, Kadoch C. Binding of TMPRSS2-ERG to BAF Chromatin remodeling complexes mediates prostate oncogenesis. Mol cell. 2018;71(4):554-566.e557.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Esgueva R, Perner S, LaFargue CJ, Scheble V, Stephan C, Lein M, Fritzsche FR, Dietel M, Kristiansen G, Rubin MA. Prevalence of TMPRSS2-ERG and SLC45A3-ERG gene fusions in a large prostatectomy cohort, modern pathology. Mod Pathol. 2010;23(4):539–46.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Lasda EL, Blumenthal T. Trans-splicing. Wiley Interdiscip Rev RNA. 2011;2:417–34.

PubMed  Article  CAS 

留言 (0)

沒有登入
gif