Three-dimensional genome organization in immune cell fate and function

Nicholson, L. B. The immune system. Essays Biochem. 60, 275 (2016).

PubMed  PubMed Central  Article  Google Scholar 

Hosokawa, H. & Rothenberg, E. V. How transcription factors drive choice of the T cell fate. Nat. Rev. Immunol. 21, 162–176 (2021).

CAS  PubMed  Article  Google Scholar 

Smale, S. T. & Natoli, G. Transcriptional control of inflammatory responses. Cold Spring Harb. Perspect. Biol. 6, a016261 (2014).

PubMed  PubMed Central  Article  Google Scholar 

Pulendran, B. & Davis, M. M. The science and medicine of human immunology. Science 369, eaay4014 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Stadhouders, R., Filion, G. J. & Graf, T. Transcription factors and 3D genome conformation in cell-fate decisions. Nature 569, 345–354 (2019).

CAS  PubMed  Article  Google Scholar 

Grosveld, F., Van Staalduinen, J. & Stadhouders, R. Transcriptional regulation by (super)enhancers: from discovery to mechanisms. Annu. Rev. Genomics Hum. Genet. 22, 127–146 (2021).

PubMed  Article  CAS  Google Scholar 

Oudelaar, A. M. & Higgs, D. R. The relationship between genome structure and function. Nat. Rev. Genet. 22, 154–168 (2021).

CAS  PubMed  Article  Google Scholar 

Furlong, E. E. M. M. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341–1345 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhu, H., Wang, G. & Qian, J. Transcription factors as readers and effectors of DNA methylation. Nat. Rev. Genet. 17, 551–565 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Voss, T. C. & Hager, G. L. Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat. Rev. Genet. 15, 69–81 (2013).

PubMed  PubMed Central  Article  CAS  Google Scholar 

de Laat, W. & Dekker, J. 3C-based technologies to study the shape of the genome. Methods 58, 189–191 (2012).

PubMed  Article  CAS  Google Scholar 

Jerković, I. & Cavalli, G. Understanding 3D genome organization by multidisciplinary methods. Nat. Rev. Mol. Cell Biol. 22, 511–528 (2021).

PubMed  Article  CAS  Google Scholar 

Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018).

CAS  PubMed  Article  Google Scholar 

Bonev, B. & Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661–678 (2016).

CAS  PubMed  Article  Google Scholar 

Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Vilarrasa-Blasi, R. et al. Dynamics of genome architecture and chromatin function during human B cell differentiation and neoplastic transformation. Nat. Commun. 12, 651 (2021). This report characterizes 3D genome dynamics during human B cell differentiation and transformation, uncovering a plastic intermediate ‘I’ chromatin compartment type enriched in poised and Polycomb-repressed chromatin.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Vian, L. et al. The energetics and physiological impact of cohesin extrusion. Cell 173, 1165–1178.e20 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Barrington, C. et al. Enhancer accessibility and CTCF occupancy underlie asymmetric TAD architecture and cell type specific genome topology. Nat. Commun. 10, 1–14 (2019).

CAS  Article  Google Scholar 

Kraft, K. et al. Serial genomic inversions induce tissue-specific architectural stripes, gene misexpression and congenital malformations. Nat. Cell Biol. 21, 305–310 (2019).

CAS  PubMed  Article  Google Scholar 

Hsieh, T. H. S. et al. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol. Cell 78, 539–553.e8 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Davidson, I. F. & Peters, J. M. Genome folding through loop extrusion by SMC complexes. Nat. Rev. Mol. Cell Biol. 22, 445–464 (2021).

CAS  PubMed  Article  Google Scholar 

Andrey, G. & Mundlos, S. The three-dimensional genome: regulating gene expression during pluripotency and development. Development 144, 3646–3658 (2017).

CAS  PubMed  Article  Google Scholar 

Schoenfelder, S. & Fraser, P. Long-range enhancer–promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).

CAS  PubMed  Article  Google Scholar 

Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

CAS  PubMed  Article  Google Scholar 

Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Maeshima, K., Ide, S., Hibino, K. & Sasai, M. Liquid-like behavior of chromatin. Curr. Opin. Genet. Dev. 37, 36–45 (2016).

CAS  PubMed  Article  Google Scholar 

Zenk, F. et al. HP1 drives de novo 3D genome reorganization in early Drosophila embryos. Nature 593, 289 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sabari, B. R., Dall’Agnese, A. & Young, R. A. Biomolecular condensates in the nucleus. Trends Biochem. Sci. 45, 961–977 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hildebrand, E. M. & Dekker, J. Mechanisms and functions of chromosome compartmentalization. Trends Biochem. Sci. 45, 385–396 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Huang, Y., Neijts, R. & de Laat, W. How chromosome topologies get their shape: views from proximity ligation and microscopy methods. FEBS Lett. 594, 3439–3449 (2020).

CAS  PubMed  Article  Google Scholar 

McCord, R. P., Kaplan, N. & Giorgetti, L. Chromosome conformation capture and beyond: toward an integrative view of chromosome structure and function. Mol. Cell 77, 688–708 (2020).

CAS  PubMed  Article  Google Scholar 

Ibrahim, D. M. & Mundlos, S. The role of 3D chromatin domains in gene regulation: a multi-facetted view on genome organization. Curr. Opin. Genet. Dev. 61, 1–8 (2020).

CAS  PubMed  Article  Google Scholar 

Robson, M. I., Ringel, A. R. & Mundlos, S. Regulatory landscaping: how enhancer–promoter communication is sculpted in 3D. Mol. Cell 74, 1110–1122 (2019).

CAS  PubMed  Article  Google Scholar 

Morgan, S. L. et al. Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping. Nat. Commun. 8, 1–9 (2017).

Article  CAS  Google Scholar 

Wang, H. et al. CRISPR-mediated programmable 3D genome positioning and nuclear organization. Cell 175, 1405–1417.e14 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kim, J. H. et al. LADL: light-activated dynamic looping for endogenous gene expression control. Nat. Methods 16, 633–639 (2019).

PubMed  PubMed Central  Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif