The role of microRNAs in neurodegenerative diseases: a review

Abrahams S, Haylett WL, Johnson G, Carr JA, Bardien S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: a review. Neuroscience. 2019;406:1–21. https://doi.org/10.1016/j.neuroscience.2019.02.020.

CAS  Article  PubMed  Google Scholar 

Absalon S, Kochanek DM, Raghavan V, Krichevsky AM. MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci. 2013;33(37):14645–59. https://doi.org/10.1523/JNEUROSCI.1327-13.2013.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Agostini M, Tucci P, Killick R, Candi E, Sayan BS, di Val R, Cervo P, Melino G. Neuronal differentiation by TAp73 is mediated by microRNA-34a regulation of synaptic protein targets. Proc Natl Acad Sci U S A. 2011;108(52):21093–8. https://doi.org/10.1073/pnas.1112061109.

Article  PubMed  PubMed Central  Google Scholar 

Akhter R, Shao Y, Shaw M, Formica S, Khrestian M, Leverenz JB, Bekris LM. Regulation of ADAM10 by miR-140-5p and potential relevance for Alzheimer’s disease. Neurobiol Aging. 2018;63:110–9. https://doi.org/10.1016/j.neurobiolaging.2017.11.007.

CAS  Article  PubMed  Google Scholar 

Alizadeh M, Safarzadeh A, Beyranvand F, Ahmadpour F, Hajiasgharzadeh K, Baghbanzadeh A, Baradaran B. The potential role of miR-29 in health and cancer diagnosis, prognosis, and therapy. J Cell Physiol. 2019;234(11):19280–97. https://doi.org/10.1002/jcp.28607.

CAS  Article  PubMed  Google Scholar 

Alural B, Ozerdem A, Allmer J, Genc K, Genc S. Lithium protects against paraquat neurotoxicity by NRF2 activation and miR-34a inhibition in SH-SY5Y cells. Front Cell Neurosci. 2015;9:209. https://doi.org/10.3389/fncel.2015.00209.

CAS  Article  PubMed  PubMed Central  Google Scholar 

AlwinPremAnand A, Alvarez-Bolado G, Wizenmann A. MiR-9 and the midbrain-hindbrain boundary: a showcase for the limited functional conservation and regulatory complexity of microRNAs. Front Cell Dev Biol. 2020;8:586158. https://doi.org/10.3389/fcell.2020.586158.

CAS  Article  Google Scholar 

Alzheimer’s A. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement. 2016;12(4):459–509. https://doi.org/10.1016/j.jalz.2016.03.001.

Article  Google Scholar 

Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5. https://doi.org/10.1038/nature02871.

CAS  Article  PubMed  Google Scholar 

Amoah SK, Rodriguez BA, Logothetis CN, Chander P, Sellgren CM, Weick JP, Mellios N. Exosomal secretion of a psychosis-altered miRNA that regulates glutamate receptor expression is affected by antipsychotics. Neuropsychopharmacology. 2020;45(4):656–65. https://doi.org/10.1038/s41386-019-0579-1.

CAS  Article  PubMed  Google Scholar 

Aranha MM, Santos DM, Sola S, Steer CJ, Rodrigues CM. miR-34a regulates mouse neural stem cell differentiation. PLoS ONE. 2011;6(8):e21396. https://doi.org/10.1371/journal.pone.0021396.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bak M, Silahtaroglu A, Moller M, Christensen M, Rath MF, Skryabin B, Kauppinen S. MicroRNA expression in the adult mouse central nervous system. RNA. 2008;14(3):432–44. https://doi.org/10.1261/rna.783108.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell. 2005;121(4):645–57. https://doi.org/10.1016/j.cell.2005.03.013.

CAS  Article  PubMed  Google Scholar 

Banzhaf-Strathmann J, Benito E, May S, Arzberger T, Tahirovic S, Kretzschmar H, Edbauer D. MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer’s disease. EMBO J. 2014;33(15):1667–80. https://doi.org/10.15252/embj.201387576.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Barbato C, Giacovazzo G, Albiero F, Scardigli R, Scopa C, Ciotti MT, Ruberti F. Cognitive decline and modulation of Alzheimer’s disease-related genes after inhibition of microRNA-101 in mouse hippocampal neurons. Mol Neurobiol. 2020;57(7):3183–94. https://doi.org/10.1007/s12035-020-01957-8.

CAS  Article  PubMed  Google Scholar 

Barros-Viegas AT, Carmona V, Ferreiro E, Guedes J, Cardoso AM, Cunha P, Cardoso AL. miRNA-31 improves cognition and abolishes amyloid-beta pathology by targeting APP and BACE1 in an animal model of Alzheimer’s disease. Mol Ther Nucleic Acids. 2020;19:1219–36. https://doi.org/10.1016/j.omtn.2020.01.010.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97. https://doi.org/10.1016/s0092-8674(04)00045-5.

CAS  Article  PubMed  Google Scholar 

Bazrgar M, Khodabakhsh P, Prudencio M, Mohagheghi F, Ahmadiani A. The role of microRNA-34 family in Alzheimer’s disease: a potential molecular link between neurodegeneration and metabolic disorders. Pharmacol Res. 2021;172:105805. https://doi.org/10.1016/j.phrs.2021.105805.

CAS  Article  PubMed  Google Scholar 

Beal MF. Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol. 1992;31(2):119–30. https://doi.org/10.1002/ana.410310202.

CAS  Article  PubMed  Google Scholar 

Becker D, Hirsch AG, Bender L, Lingner T, Salinas G, Krebber H. Nuclear Pre-snRNA export is an essential quality assurance mechanism for functional spliceosomes. Cell Rep. 2019;27(11):3199–3214 e3193. https://doi.org/10.1016/j.celrep.2019.05.031

Bhattacharjee S, Zhao Y, Dua P, Rogaev EI, Lukiw WJ. microRNA-34a-mediated down-regulation of the microglial-enriched triggering receptor and phagocytosis-sensor TREM2 in age-related macular degeneration. PLoS One. 2016;11(3):e0150211. https://doi.org/10.1371/journal.pone.0150211.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bithell A, Johnson R, Buckley NJ. Transcriptional dysregulation of coding and non-coding genes in cellular models of Huntington’s disease. Biochem Soc Trans. 2009;37(Pt 6):1270–5. https://doi.org/10.1042/BST0371270.

CAS  Article  PubMed  Google Scholar 

Blom-Dahl D, Azpiazu N. The Pax protein Eyegone (Eyg) interacts with the pi-RNA component Aubergine (Aub) and controls egg chamber development in Drosophila. Dev Biol. 2018;434(2):267–77. https://doi.org/10.1016/j.ydbio.2017.12.012.

CAS  Article  PubMed  Google Scholar 

Boissonneault V, Plante I, Rivest S, Provost P. MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem. 2009;284(4):1971–81. https://doi.org/10.1074/jbc.M807530200.

CAS  Article  PubMed  Google Scholar 

Bonev B, Pisco A, Papalopulu N. MicroRNA-9 reveals regional diversity of neural progenitors along the anterior-posterior axis. Dev Cell. 2011;20(1):19–32. https://doi.org/10.1016/j.devcel.2010.11.018.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bouchie A. First microRNA mimic enters clinic. Nat Biotechnol. 2013;31(7):577. https://doi.org/10.1038/nbt0713-577.

CAS  Article  PubMed  Google Scholar 

Braoudaki M, Lambrou GI. MicroRNAs in pediatric central nervous system embryonal neoplasms: the known unknown. J Hematol Oncol. 2015;8:6. https://doi.org/10.1186/s13045-014-0101-5.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Buckley NJ, Johnson R, Zuccato C, Bithell A, Cattaneo E. The role of REST in transcriptional and epigenetic dysregulation in Huntington’s disease. Neurobiol Dis. 2010;39(1):28–39. https://doi.org/10.1016/j.nbd.2010.02.003.

CAS  Article  PubMed  Google Scholar 

Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205. https://doi.org/10.1146/annurev.cellbio.23.090506.123406.

CAS  Article  PubMed  Google Scholar 

Butovsky O, Jedrychowski MP, Cialic R, Krasemann S, Murugaiyan G, Fanek Z, Weiner HL. Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Ann Neurol. 2015;77(1):75–99. https://doi.org/10.1002/ana.24304.

CAS  Article  PubMed  Google Scholar 

Cabezas R, Baez-Jurado E, Hidalgo-Lanussa O, Echeverria V, Ashrad GM, Sahebkar A, Barreto GE. Growth factors and neuroglobin in astrocyte protection against neurodegeneration and oxidative stress. Mol Neurobiol. 2019;56(4):2339–51. https://doi.org/10.1007/s12035-018-1203-9.

CAS  Article  PubMed  Google Scholar 

Caccamo A, Branca C, Piras IS, Ferreira E, Huentelman MJ, Liang WS, Oddo S. Necroptosis activation in Alzheimer’s disease. Nat Neurosci. 2017;20(9):1236–46. https://doi.org/10.1038/nn.4608.

CAS  Article  PubMed  Google Scholar 

Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinforma. 2009;7(4):147–54. https://doi.org/10.1016/S1672-0229(08)60044-3.

CAS  Article  Google Scholar 

Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66. https://doi.org/10.1038/nrc1997.

CAS  Article  PubMed  Google Scholar 

Cha DJ, Mengel D, Mustapic M, Liu W, Selkoe DJ, Kapogiannis D, Walsh DM. miR-212 and miR-132 are downregulated in neurally derived plasma exosomes of Alzheimer’s patients. Front Neurosci. 2019;13:1208. https://doi.org/10.3389/fnins.2019.01208.

Article  PubMed  PubMed Central  Google Scholar 

Chang KH, Wu YR, Chen CM. Down-regulation of miR-9* in the peripheral leukocytes of Huntington’s disease patients. Orphanet J Rare Dis. 2017;12(1):185. https://doi.org/10.1186/s13023-017-0742-x.

留言 (0)

沒有登入
gif