Multi-lesion radiomics of PET/CT for non-invasive survival stratification and histologic tumor risk profiling in patients with lung adenocarcinoma

Herbst RS, Morgensztern D, Boshoff C (2018) The biology and management of non-small cell lung cancer. Nature 553:446–454

CAS  Article  Google Scholar 

Miller KD, Nogueira L, Mariotto AB et al (2019) Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin 69:363–385

Article  Google Scholar 

Curado MP, Edwards B, Shin HR (2007) Cancer Incidence in Five Continents

Yoshizawa A, Motoi N, Riely GJ et al (2011) Impact of proposed IASLC/ATS/ERS classification of lung adenocarcinoma: prognostic subgroups and implications for further revision of staging based on analysis of 514 stage i cases. Mod Pathol 24:653–664

CAS  Article  Google Scholar 

Warth A, Muley T, Meister M et al (2012) The novel histologic International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification system of lung adenocarcinoma is a stage-independent predictor of survival. J Clin Oncol 30:1438–1446

Article  Google Scholar 

Strand TE, Rostad H, Strøm EH, Hasleton P (2015) The percentage of lepidic growth is an independent prognostic factor in invasive adenocarcinoma of the lung. Diagn Pathol 10:1–7

Article  Google Scholar 

Li H, Cao W (2020) Pulmonary enteric adenocarcinoma: a literature review. J Thorac Dis 12:3217–3226

Article  Google Scholar 

Travis WD, Brambilla E, Nicholson AG et al (2015) The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 10:1243–1260

Article  Google Scholar 

Loo PS, Thomas SC, Nicolson MC et al (2010) Subtyping of undifferentiated non-small cell carcinomas in bronchial biopsy specimens. J Thorac Oncol 5:442–447

Article  Google Scholar 

Soler Cataluña JJ, Perpiñá M, Greses JV et al (1996) Cell type accuracy of bronchial biopsy specimens in primary lung cancer. Chest 109:1199–1203

Article  Google Scholar 

Huang K-Y, Ko P-Z, Yao C-W et al (2017) Inaccuracy of lung adenocarcinoma subtyping using preoperative biopsy specimens. J Thorac Cardiovasc Surg 154. https://doi.org/10.1016/j.jtcvs.2017.02.059

Ettinger DS, Wood DE, Aggarwal C et al (2019) NCCN Guidelines insights: non-small cell lung cancer, Version 1.2020. J Natl Compr Canc Netw 17:1464–1472

Article  Google Scholar 

Planchard D, Popat S, Kerr K et al (2018) Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 29:iv192–iv237

CAS  Article  Google Scholar 

Cuaron J, Dunphy M, Rimner A (2013) Role of FDG-PET scans in staging, response assessment, and follow-up care for non-small cell lung cancer. Front Oncol 2:208. https://doi.org/10.3389/fonc.2012.00208

Article  PubMed  PubMed Central  Google Scholar 

Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446

Article  Google Scholar 

Papp L, Spielvogel CP, Rausch I et al (2018) Personalizing medicine through hybrid imaging and medical big data analysis. Front Phys 6:1–19

Sha X, Gong G, Qiu Q et al (2019) Identifying pathological subtypes of non-small-cell lung cancer by using the radiomic features of 18F-fluorodeoxyglucose positron emission computed tomography. Transl Cancer Res 8:1741–1749

CAS  Article  Google Scholar 

Shao X, Niu R, Shao X et al (2020) Value of 18F-FDG PET/CT-based radiomics model to distinguish the growth patterns of early invasive lung adenocarcinoma manifesting as ground-glass opacity nodules. EJNMMI Res 10. https://doi.org/10.1186/s13550-020-00668-4

Chang C, Sun X, Wang G et al (2021) A machine learning model based on PET/CT radiomics and clinical characteristics predicts ALK rearrangement status in lung adenocarcinoma. Front Oncol 11:1–12

Google Scholar 

Kirienko M, Cozzi L, Antunovic L et al (2018) Prediction of disease-free survival by the PET/CT radiomic signature in non-small cell lung cancer patients undergoing surgery. Eur J Nucl Med Mol Imaging 45:207–217

Article  Google Scholar 

Valentinuzzi D, Vrankar M, Boc N et al (2020) [18F]FDG PET immunotherapy radiomics signature (iRADIOMICS) predicts response of non-small-cell lung cancer patients treated with pembrolizumab. Radiol Oncol 54:285–294

CAS  Article  Google Scholar 

Kirienko M, Sollini M, Corbetta M, et al (2021) Radiomics and gene expression profile to characterise the disease and predict outcome in patients with lung cancer. Eur J Nucl Med Mol Imaging 48:3643–3655

Edge SB, Compton CC (2010) The american joint committee on cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 17:1471–1474

Article  Google Scholar 

Travis WD, Brambilla E, Noguchi M et al (2011) International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Classification of Lung Adenocarcinoma. J Thorac Oncol 6:244–285

Article  Google Scholar 

Joo Hyun O, Lodge MA, Wahl RL (2016) Practical percist: a simplified guide to PET response criteria in solid tumors 1.0. Radiology 280:576–584

Article  Google Scholar 

Stytz MR, Parrott RW (1993) Using kriging for 3d medical imaging. Comput Med Imaging Graph 17:421–442

CAS  Article  Google Scholar 

Zwanenburg A, Leger S, Vallières M, Löck S (2016) Image biomarker standardisation initiative. Radology 295:328–338 https://doi.org/10.1148/radiol.2020191145

Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577

Article  Google Scholar 

Amin A, Anwar S, Adnan A, et al (2016) Comparing oversampling techniques to handle the class imbalance problem: a customer churn prediction case study. IEEE Access https://doi.org/10.1109/ACCESS.2016.2619719

Huang Y, Liu Z, He L et al (2016) Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (I or II) non—small cell lung cancer. Radiology 281:947–957

Article  Google Scholar 

Mu W, Jiang L, Zhang JY et al (2020) Non-invasive decision support for NSCLC treatment using PET/CT radiomics. Nat Commun 11. https://doi.org/10.1038/s41467-020-19116-x

Yang B, Ji H, Zhong J et al (2020) Value of 18F-FDG PET/CT-based radiomics nomogram to predict survival outcomes and guide personalized targeted therapy in lung adenocarcinoma with EGFR mutations. Front Oncol 10. https://doi.org/10.3389/fonc.2020.567160

Choe J, Lee SM, Do KH et al (2020) Outcome prediction in resectable lung adenocarcinoma patients: value of CT radiomics. Eur Radiol 30:4952–4963

Article  Google Scholar 

Krajnc D, Papp L, Nakuz TS et al (2021) Breast tumor characterization using [18F]FDG-PET/CT imaging combined with data preprocessing and radiomics. Cancers 13. https://doi.org/10.3390/cancers13061249

Naimi AI, Balzer LB (2018) Stacked generalization: an introduction to super learning. Eur J Epidemiol 33. https://doi.org/10.1007/s10654-018-0390-z

Carvalho S, Leijenaar RTH, Troost EGC et al (2018) 18F-fluorodeoxyglucose positron-emission tomography (FDG-PET)-Radiomics of metastatic lymph nodes and primary tumor in non-small cell lung cancer (NSCLC) – A prospective externally validated study. PLoS One 13:e0192859. https://doi.org/10.1007/s00259-020-04839-2

Article  PubMed  PubMed Central  Google Scholar 

Bae JM, Jeong JY, Lee HY et al (2017) Pathologic stratification of operable lung adenocarcinoma using radiomics features extracted from dual energy CT images. Oncotarget 8:523–535

Article  Google Scholar 

Yang SM, Chen LW, Wang HJ et al (2018) Extraction of radiomic values from lung adenocarcinoma with near-pure subtypes in the International Association for the Study of Lung Cancer/the American Thoracic Society/the European Respiratory Society (IASLC/ATS/ERS) classification. Lung Cancer 119:56–63

Article  Google Scholar 

留言 (0)

沒有登入
gif