In vivo probabilistic atlas of white matter tracts of the human subthalamic area combining track density imaging and optimized diffusion tractography

Al-Fatly B, Ewert S, Kübler D et al (2019) Connectivity profile of thalamic deep brain stimulation to effectively treat essential tremor. Brain. https://doi.org/10.1093/brain/awz236

Article  PubMed  Google Scholar 

Aquino CC, Duffley G, Hedges DM et al (2019) Interleaved deep brain stimulation for dyskinesia management in Parkinson’s disease. Mov Disord 34:1722–1727. https://doi.org/10.1002/mds.27839

Article  PubMed  Google Scholar 

Aufenberg C, Sarnthein J, Morel A et al (2005) A revival of Spiegel’s campotomy: long term results of the stereotactic pallidothalamic tractotomy against the parkinsonian thalamocortical dysrhythmia. Thalamus Relat Syst 3:121. https://doi.org/10.1017/S147292880700012X

Article  Google Scholar 

Avants BB, Epstein CL, Grossman M, Gee JC (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal. https://doi.org/10.1016/j.media.2007.06.004

Article  PubMed  Google Scholar 

Aviles-Olmos I, Kefalopoulou Z, Tripoliti E et al (2014) Long-term outcome of subthalamic nucleus deep brain stimulation for Parkinson’s disease using an MRI-guided and MRI-verified approach. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2013-306907

Article  PubMed  Google Scholar 

Basile GA, Bertino S, Bramanti A et al (2021a) In vivo super-resolution track-density imaging for thalamic nuclei identification. Cereb Cortex. https://doi.org/10.1093/cercor/bhab184

Article  PubMed  Google Scholar 

Basile GA, Quartu M, Bertino S et al (2021b) Red nucleus structure and function: from anatomy to clinical neurosciences. Brain Struct Funct 226:69–91

Article  Google Scholar 

Bertino S, Basile GA, Anastasi G et al (2020a) Anatomical characterization of the human structural connectivity between the pedunculopontine nucleus and globus pallidus via multi-shell multi-tissue tractography. Medicina (b Aires) 56:452. https://doi.org/10.3390/medicina56090452

Article  Google Scholar 

Bertino S, Basile GA, Bramanti A et al (2020b) Spatially coherent and topographically organized pathways of the human globus pallidus. Hum Brain Mapp 41:4641–4661. https://doi.org/10.1002/hbm.25147

Article  PubMed  PubMed Central  Google Scholar 

Bertino S, Basile GA, Bramanti A et al (2021) Ventral intermediate nucleus structural connectivity-derived segmentation: anatomical reliability and variability. Neuroimage 243:118519. https://doi.org/10.1016/j.neuroimage.2021.118519

Article  PubMed  Google Scholar 

Bond AE, Shah BB, Huss DS et al (2017) Safety and efficacy of focused ultrasound thalamotomy for patients with medication-refractory, tremor-dominant Parkinson disease a randomized clinical trial. JAMA Neurol 74:1412–1418. https://doi.org/10.1001/jamaneurol.2017.3098

Article  PubMed  PubMed Central  Google Scholar 

Cacciola A, Bertino S, Basile GA et al (2019) Mapping the structural connectivity between the periaqueductal gray and the cerebellum in humans. Brain Struct Funct. https://doi.org/10.1007/s00429-019-01893-x

Article  PubMed  PubMed Central  Google Scholar 

Calamante F (2017) Track-weighted imaging methods: extracting information from a streamlines tractogram. Magn Reson Mater Physics, Biol Med 30:317–335. https://doi.org/10.1007/s10334-017-0608-1

CAS  Article  Google Scholar 

Calamante F, Tournier JD, Jackson GD, Connelly A (2010) Track-density imaging (TDI): super-resolution white matter imaging using whole-brain track-density mapping. Neuroimage. https://doi.org/10.1016/j.neuroimage.2010.07.024

Article  PubMed  Google Scholar 

Calamante F, Tournier J-D, Heidemann RM et al (2011) Track density imaging (TDI): validation of super resolution property. Neuroimage 56:1259–1266. https://doi.org/10.1016/j.neuroimage.2011.02.059

Article  PubMed  Google Scholar 

Calamante F, Tournier J-D, Kurniawan ND et al (2012a) Super-resolution track-density imaging studies of mouse brain: comparison to histology. Neuroimage 59:286–296. https://doi.org/10.1016/j.neuroimage.2011.07.014

Article  PubMed  Google Scholar 

Calamante F, Tournier JD, Smith RE, Connelly A (2012b) A generalised framework for super-resolution track-weighted imaging. Neuroimage. https://doi.org/10.1016/j.neuroimage.2011.08.099

Article  PubMed  Google Scholar 

Calamante F, Oh S-H, Tournier J-D et al (2013) Super-resolution track-density imaging of thalamic substructures: comparison with high-resolution anatomical magnetic resonance imaging at 7.0T. Hum Brain Mapp 34:2538–2548. https://doi.org/10.1002/hbm.22083

Article  PubMed  Google Scholar 

Chung BS, Park JS (2020) Whole course of pallidothalamic tracts identified on the sectioned images and surface models. Clin Anat 33:66–76. https://doi.org/10.1002/ca.23468

Article  PubMed  Google Scholar 

Cury RG, Fraix V, Castrioto A et al (2017) Thalamic deep brain stimulation for tremor in Parkinson disease, essential tremor, and dystonia. Neurology 89:1416–1423. https://doi.org/10.1212/WNL.0000000000004295

Article  PubMed  Google Scholar 

Dai J-K, Wang S-X, Shan D et al (2018) Super-resolution track-density imaging reveals fine anatomical features in tree shrew primary visual cortex and hippocampus. Neurosci Bull 34:438–448. https://doi.org/10.1007/s12264-017-0199-x

CAS  Article  PubMed  Google Scholar 

Descoteaux M, Deriche R, Knösche TR, Anwander A (2009) Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans Med Imaging. https://doi.org/10.1109/TMI.2008.2004424

Article  PubMed  Google Scholar 

Dhollander T, Raffelt D, Connelly A (2016) Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image. ISMRM Work Break Barriers Diffus MRI 5

Dhollander T, Mito R, Raffelt D, Connelly A (2019) Improved white matter response function estimation for 3-tissue constrained spherical deconvolution. Proc Intl Soc Mag Reson Med 555

Dice LR (1945) Measures of the amount of ecologic association between species. Ecology. https://doi.org/10.2307/1932409

Article  Google Scholar 

Dyrby TB, Lundell H, Burke MW et al (2014) Interpolation of diffusion weighted imaging datasets. Neuroimage 103:202–213. https://doi.org/10.1016/j.neuroimage.2014.09.005

Article  PubMed  Google Scholar 

Fernández-Miranda JC, Wang Y, Pathak S et al (2015) Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain. Brain Struct Funct 220:1665–1680. https://doi.org/10.1007/s00429-014-0751-7

Article  PubMed  Google Scholar 

Fishman PS, Frenkel V (2017) Treatment of movement disorders with focused ultrasound. J Cent Nerv Syst Dis. https://doi.org/10.1177/1179573517705670

Article  PubMed  PubMed Central  Google Scholar 

Fonov V, Evans A, McKinstry R et al (2009) Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. Neuroimage. https://doi.org/10.1016/s1053-8119(09)70884-5

Article  PubMed  Google Scholar 

Gallay MN, Jeanmonod D, Liu J, Morel A (2008) Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery. Brain Struct Funct. https://doi.org/10.1007/s00429-007-0170-0

Article  PubMed  PubMed Central  Google Scholar 

Gallay MN, Moser D, Federau C, Jeanmonod D (2019) Anatomical and technical reappraisal of the pallidothalamic tractotomy with the incisionless transcranial MR-guided focused ultrasound. A technical note. Front Surg. https://doi.org/10.3389/fsurg.2019.00002

Article  PubMed  PubMed Central  Google Scholar 

Girard G, Whittingstall K, Deriche R, Descoteaux M (2014) Towards quantitative connectivity analysis: reducing tractography biases. Neuroimage 98:266–278. https://doi.org/10.1016/j.neuroimage.2014.04.074

Article  PubMed  Google Scholar 

Glasser MF, Sotiropoulos SN, Wilson JA et al (2013) The minimal preprocessing pipelines for the human connectome project. Neuroimage 80:105–124. https://doi.org/10.1016/j.neuroimage.2013.04.127

Article  PubMed  Google Scholar 

Granziera C, Schmahmann JD, Hadjikhani N et al (2009) Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum in vivo. PLoS One. https://doi.org/10.1371/journal.pone.0005101

Article  PubMed  PubMed Central  Google Scholar 

Grisot G, Haber SN, Yendiki A (2021) Diffusion MRI and anatomic tracing in the same brain reveal common failure modes of tractography. Neuroimage 239:118300. https://doi.org/10.1016/j.neuroimage.2021.118300

Article  PubMed  Google Scholar 

Haber S (2016) Perspective on basal ganglia connections as described by Nauta and Mehler in 1966: where we were and how this paper effected where we are now. Brain Res 1645:4–7. https://doi.org/10.1016/j.brainres.2016.04.016

CAS  Article  PubMed  Google Scholar 

Hassler R (1959) Anatomy of the thalamus. In: Schaltenbrand G, Bayley P (eds) Introduction to stereotaxic operations with an atlas of the human brain, 1st edn. Georg Thieme Verlag, Stuttgart, New York, NY, pp 230–290

Google Scholar 

Hau J, Sarubbo S, Perchey G et al (2016) Cortical terminations of the inferior fronto-occipital and uncinate fasciculi: anatomical stem-based virtual dissection. Front Neuroanat. https://doi.org/10.3389/fnana.2016.00058

Article  PubMed  PubMed Central  Google Scholar 

Hau J, Sarubbo S, Houde JC et al (2017) Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation. Brain Struct Funct 222:1645–1662. https://doi.org/10.1007/s00429-016-1298-6

Article  PubMed  Google Scholar 

Hirai T, Jones EG (1989) A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Rev 14:1–34. https://doi.org/10.1016/0165-0173(89)90007-6

CAS  Article  PubMed  Google Scholar 

Holanda VM, Okun MS, Middlebrooks EH et al (2020) Postmortem dissections of common targets for lesion and deep brain stimulation surgeries. Neurosurgery. https://doi.org/10.1093/neuros/nyz318

Article  PubMed  Google Scholar 

Horn A, Fox MD (2020) Opportunities of connectomic neuromodulation. Neuroimage 221:117180. https://doi.org/10.1016/j.neuroimage.2020.117180

Article  PubMed  Google Scholar 

Ilinsky I, Horn A, Paul-Gilloteaux P et al (2018) Human motor thalamus reconstructed in 3D from continuous sagittal sections with identified subcortical afferent territories. Eneuro 5:ENEURO.0060-18.2018. https://doi.org/10.1523/ENEURO.0060-18.2018

Article  PubMed 

留言 (0)

沒有登入
gif