Morphology, biochemistry and connectivity of Cluster N and the hippocampal formation in a migratory bird

Atoji Y, Wild JM (2004) Fiber connections of the hippocampal formation and septum and subdivisions of the hippocampal formation in the pigeon as revealed by tract tracing and kainic acid lesions. J Comp Neurol 475(3):426–461. https://doi.org/10.1002/cne.20186

CAS  Article  PubMed  Google Scholar 

Atoji Y, Wild JM (2005) Afferent and efferent connections of the dorsolateral corticoid area and a comparison with connections of a temporo-parieto-occipital area in the pigeon (Columba livia). J Comp Neurol 485:165–182. https://doi.org/10.1002/cne.20490

Article  PubMed  Google Scholar 

Atoji Y, Wild JM (2006) Anatomy of the avian hippocampal formation. Rev Neurosci 17(1–2):3–15. https://doi.org/10.1515/REVNEURO.2006.17.1-2.3

Article  PubMed  Google Scholar 

Atoji Y, Wild JM (2012) Afferent and efferent projections of the mesopallium in the pigeon (Columba livia). J Comp Neurol 520(4):717–741. https://doi.org/10.1002/cne.22763

Article  PubMed  Google Scholar 

Atoji Y, Wild JM (2014) Efferent and afferent connections of the olfactory bulb and prepiriform cortex in the pigeon (Columba livia). J Comp Neurol 522(8):1728–1752. https://doi.org/10.1002/cne.23504

Article  PubMed  Google Scholar 

Atoji Y, Wild JM (2019) Projections of the densocellular part of the rostral Wulst of pigeons (Columba livia). Brain Res 1711:130–139. https://doi.org/10.1016/j.brainres.2019.01.001

CAS  Article  PubMed  Google Scholar 

Atoji Y, Sarkar S, Wild JM (2018) Differential projections of the densocellular and intermediate parts of the hyperpallium in the pigeon (Columba livia). J Comp Neurol 526:146–165. https://doi.org/10.1002/cne.24328

CAS  Article  PubMed  Google Scholar 

Bagnoli P, Burkhalter A (1983) Organization of the afferent projections to the Wulst in the pigeon. J Comp Neurol 214:103–113. https://doi.org/10.1002/cne.902140111

CAS  Article  PubMed  Google Scholar 

Behroozi M, Ströckens F, Stacho M, Güntürkün O (2017) Functional connectivity pattern of the internal hippocampal network in awake pigeons: a resting-state fmri study. Brain Behav Evol 90(1):62–72. https://doi.org/10.1159/000475591

Article  PubMed  Google Scholar 

Ben-Yishay E, Krivoruchko K, Ron S, Ulanovsky N, Derdikman D, Gutfreund Y (2021) Directional tuning in the hippocampal formation of birds. Curr Biol. https://doi.org/10.1016/j.cub.2021.04.029

Article  PubMed  Google Scholar 

Bingman VP, MacDougall-Shackleton SA (2017) The avian hippocampus and the hypothetical maps used by navigating migratory birds (with some reflection on compasses and migratory restlessness). J Comp Physiol A 203(6–7):465–474. https://doi.org/10.1007/s00359-017-1161-0

Article  Google Scholar 

Bingman VP, Pemberton ML, Mora CV (2021) Avian forebrain processing of magnetic intensity and inclination: hippocampus, anterior forebrain Wulst and an unexpected double-dissociation. Ethol Ecol Evol 33(3):230–247. https://doi.org/10.1080/03949370.2021.1871966

Article  Google Scholar 

Bingman VP, Jones TJ (1994) Sun compass-based spatial learning impaired in homing pigeons with hippocampal lesions. J Neurosci 14(11):6687–6694. https://doi.org/10.1523/JNEUROSCI.14-11-06687.1994

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bolte P, Bleibaum F, Einwich A, Günther A, Liedvogel M, Heyers D, Depping A, Wohlbrand L, Rabus R, Janssen-Bienhold U, Mouritsen H (2016) Localisation of the putative magnetoreceptive protein cryptochrome 1b in the retinae of migratory birds and homing pigeons. PLoS ONE 11(3):e0147819. https://doi.org/10.1371/journal.pone.0147819

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bolte P, Einwich A, Seth PK, Chetverikova R, Heyers D, Wojahn I, Janssen-Bienhold U, Feederle R, Hore PJ, Dedek K, Mouritsen H (2021) Cryptochrome 1a localisation in light- and dark-adapted retinae of several migratory and non-migratory bird species: No signs of light-dependent activation. Ethol Ecol Evol 33:248–272. https://doi.org/10.1080/03949370.2020.1870571

Article  Google Scholar 

Braun K, Robins CA, Malouf AT, Schwartzkroin PA (1996) Slice cultures of the imprinting-relevant forebrain area medio-rostral neostriatum/hyperstriatum ventrale of the domestic chick: immunocytochemical characterization of neurons containing Ca(2+)-binding proteins. J Chem Neuroanat 10:41–51. https://doi.org/10.1016/0891-0618(95)00099-2

CAS  Article  PubMed  Google Scholar 

Budzinsky CA, Gagliardo A, Ioalé P, Bingman VP (2002) Participation of the homing pigeon thalamofugal visual pathway in sun-compass assotiative learning. Eur J Neurosci 15:197–210. https://doi.org/10.1046/j.0953-816x.2001.01833.x

Article  Google Scholar 

Budzynski CA, Bingman VP (2004) Participation of the thalamofugal visual pathway in a coarse pattern discrimination task in an open arena. Behav Brain Res 153:543–556. https://doi.org/10.1016/j.bbr.2004.01.011

Article  PubMed  Google Scholar 

Casini G, Bingman VP, Bagnoli P (1986) Connections of the pigeon dorsomedial forebrain studied with WGA-HRP and 3H-proline. J Comp Neurol 245(4):454–470. https://doi.org/10.1002/cne.902450403

CAS  Article  PubMed  Google Scholar 

Casini G, Fontanesi G, Bingman VP, Jones TJ, Gagliardo A, Ioalè P, Bagnoli P (1997) The neuroethology of cognitive maps: contributions from research on the hippocampus and homing pigeon navigation. Arch Ital Biol 135(1):73–92. https://doi.org/10.4449/aib.v135i1.639

CAS  Article  PubMed  Google Scholar 

Celio MR (1986) Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. Science 231:995–997. https://doi.org/10.1126/science.3945815

CAS  Article  PubMed  Google Scholar 

Chen CC, Winkler CM, Pfenning AR, Jarvis ED (2013) Molecular profiling of the developing avian telencephalon. Regional timing and brain subdivision continuities. J Comp Neurol 521(16):3666–3701. https://doi.org/10.1002/cne.23406

Article  PubMed  Google Scholar 

Colombo M, Broadbent N (2000) Is the avian hippocampus a functional homologue of the mammalian hippocampus? Neurosci Biobehav Rev 24(4):465–484. https://doi.org/10.1016/S0149-7634(00)00016-6

CAS  Article  PubMed  Google Scholar 

Deng C, Rogers LJ (1998) Bilaterally projecting neurons in the two visual pathways of chicks. Brain Res 794(2):281–290. https://doi.org/10.1016/S0006-8993(98)00237-6

CAS  Article  PubMed  Google Scholar 

Einwich A, Dedek K, Seth PK, Laubinger S, Mouritsen H (2020) A novel isoform of cryptochrome 4 (Cry4b) is expressed in the retina of a night-migratory songbird. Sci Rep 10(1):15794. https://doi.org/10.1038/s41598-020-72579-2

CAS  Article  PubMed  PubMed Central  Google Scholar 

Einwich A, Seth PK, Bartolke R, Bolte P, Feederle R, Dedek K, Mouritsen H (2021) Localisation of cryptochrome 2 in the avian retina. J Comp Physiol A. https://doi.org/10.1007/s00359-021-01506-1

Article  Google Scholar 

Elbers D, Bulte M, Bairlein F, Mouritsen H, Heyers D (2017) Magnetic activation in the brain of the migratory northern wheatear (Oenanthe oenanthe). J Comp Physiol A 203(8):591–600. https://doi.org/10.1007/s00359-017-1167-7

CAS  Article  Google Scholar 

Feenders G, Liedvogel M, Rivas M, Zapka M, Horita H, Hara E, Wada K, Mouritsen H, Jarvis ED (2008) Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin. PLoS ONE 3:e1768. https://doi.org/10.1371/journal.pone.0001768

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gagliardo A (2013) Forty years of olfactory navigation in birds. J Exp Biol 216(Pt 12):2165–2171. https://doi.org/10.1242/jeb.070250

Article  PubMed  Google Scholar 

Gagliardo AP, Casini G, Rossino MG, Wikelski M, Bingman VP (2020) Importance of the hippocampus for the learning of route fidelity in homing pigeons. Biol Lett 16(7):20200095. https://doi.org/10.1098/rsbl.2020.0095

Article  PubMed Central  Google Scholar 

Gedman G, Haase B, Durieux G, Biegler MT, Fedrigo O, Jarvis ED (2021) As above, so below: Whole transcriptome profiling demonstrates strong molecular similarities between avian dorsal and ventral pallial subdivisions. J Comp Neurol 529(12):3222–3246. https://doi.org/10.1002/cne.25159

Article  PubMed  PubMed Central  Google Scholar 

Grella SL, Guigueno MF, White DJ, Sherry DF, Marrone DF (2016) Context dependent Egr1 expression in the avian hippocampus. PLoS ONE 11(10):e0164333. https://doi.org/10.1371/journal.pone.0164333

CAS  Article  PubMed  PubMed Central  Google Scholar 

Guirado S, Real MA, Olmos JL, Dávila JC (2003) Distinct types of nitric oxide-producing neurons in the developing and adult mouse claustrum. J Comp Neurol 465:431–444. https://doi.org/10.1002/cne.10835

Article  PubMed  Google Scholar 

Günther A, Einwich A, Sjulstok E, Feederle R, Bolte P, Koch KW, Solov’yov IA, Mouritsen H (2018) Double-cone localization and seasonal expression pattern suggest a role in Magnetoreception for European robin cryptochrome 4. Curr Biol. https://doi.org/10.1016/j.cub.2017.12.003

Article  PubMed  Google Scholar 

Güntürkün O, Miceli D, Watanabe M (1993) Anatomy of the avian thalamofugal pathway. In: Zeigler HP, Bischof HJ (eds) Vision, brain and behavior in birds. MIT, Cambridge, pp 115–135

Google Scholar 

Güntürkün O, Karten HJ (1991) An immunocytochemical analysis of the lateral geniculate complex in the pigeon (Columba livia). J Comp Neurol 314(4):721–749. https://doi.org/10.1002/cne.903140407

Article  PubMed  Google Scholar 

Güntürkün O (2000) Sensory physiology: Vision. In: Whittow GC (ed) Sturkje´s avian physiology. Academic press, Orlando, pp 1–19. https://doi.org/10.1007/s00359-017-1167-7

Chapter  Google Scholar 

Haase K, Musielak I, Warmuth-Moles L, Leberecht B, Zolotareva A, Mouritsen H, Heyers D (2022) In search for the avian trigeminal magnetic sensor: distribution of peripheral and central terminals of ophthalmic sensory neurons in the night-migratory eurasian blackcap (Sylvia atricapilla). Front Neuroanat 16:853401. https://doi.org/10.3389/fnana.2022.853401

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hein CM, Zapka M, Heyers D, Kutzschbauch S, Schneider N-L, Mouritsen H (2010) Night-migratory garden warblers can orient with their magnetic compass using the left, the right or both eyes. J R Soc Interface 7(Suppl 2):S227-233.

留言 (0)

沒有登入
gif