On the Verge of Precision Medicine in Diabetes

International Diabetes Federation. IDF Diabetes Atlas. 10th ed. Brussels: International Diabetes Federation; 2021.

Google Scholar 

Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183: 109119. https://doi.org/10.1016/j.diabres.2021.109119.

Article  PubMed  Google Scholar 

Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383:1068–83. https://doi.org/10.1016/s0140-6736(13)62154-6.

CAS  Article  PubMed  Google Scholar 

McCarthy MI. Painting a new picture of personalised medicine for diabetes. Diabetologia. 2017;60:793–9. https://doi.org/10.1007/s00125-017-4210-x.

Article  PubMed  PubMed Central  Google Scholar 

Ahlqvist E, Storm P, Käräjämäki A, Martinell M, Dorkhan M, Carlsson A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6:361–9. https://doi.org/10.1016/s2213-8587(18)30051-2.

Article  PubMed  Google Scholar 

Ahlqvist E, Prasad RB, Groop L. Subtypes of type 2 diabetes determined from clinical parameters. Diabetes. 2020;69:2086–93. https://doi.org/10.2337/dbi20-0001.

CAS  Article  PubMed  Google Scholar 

Udler MS, Kim J, von Grotthuss M, Bonàs-Guarch S, Cole JB, Chiou J, et al. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: a soft clustering analysis. PLoS Med. 2018;15: e1002654. https://doi.org/10.1371/journal.pmed.1002654.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mahajan A, Wessel J, Willems SM, Zhao W, Robertson NR, Chu AY, et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat Genet. 2018;50:559–71. https://doi.org/10.1038/s41588-018-0084-1.

CAS  Article  PubMed  PubMed Central  Google Scholar 

DiCorpo D, LeClair J, Cole JB, Sarnowski C, Ahmadizar F, Bielak LF, et al. Type 2 diabetes partitioned polygenic scores associate with disease outcomes in 454,193 individuals across 13 cohorts. Diabetes Care. 2022;45:674–83. https://doi.org/10.2337/dc21-1395.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mahajan A, Spracklen CN, Zhang W, Ng MCY, Petty LE, Kitajima H, et al. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat Genet. 2022;54:560–72. https://doi.org/10.1038/s41588-022-01058-3.

CAS  Article  PubMed  Google Scholar 

Vujkovic M, Keaton JM, Lynch JA, Miller DR, Zhou J, Tcheandjieu C, et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet. 2020;52:680–91. https://doi.org/10.1038/s41588-020-0637-y.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chen J, Spracklen CN, Marenne G, Varshney A, Corbin LJ, Luan J, et al. The trans-ancestral genomic architecture of glycemic traits. Nat Genet. 2021;53:840–60. https://doi.org/10.1038/s41588-021-00852-9.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Florez JC. Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia. 2008;51:1100–10. https://doi.org/10.1007/s00125-008-1025-9.

CAS  Article  PubMed  Google Scholar 

Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38:320–3. https://doi.org/10.1038/ng1732.

CAS  Article  PubMed  Google Scholar 

Lyssenko V, Lupi R, Marchetti P, Del Guerra S, Orho-Melander M, Almgren P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest. 2007;117:2155–63. https://doi.org/10.1172/jci30706.

CAS  Article  PubMed  PubMed Central  Google Scholar 

da Silva XG, Loder MK, McDonald A, Tarasov AI, Carzaniga R, Kronenberger K, et al. TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells. Diabetes. 2009;58:894–905. https://doi.org/10.2337/db08-1187.

CAS  Article  Google Scholar 

Srinivasan S, Kaur V, Chamarthi B, Littleton KR, Chen L, Manning AK, et al. TCF7L2 genetic variation augments incretin resistance and influences response to a sulfonylurea and metformin: the Study to Understand the Genetics of the Acute Response to Metformin and Glipizide in Humans (SUGAR-MGH). Diabetes Care. 2018;41:554–61. https://doi.org/10.2337/dc17-1386.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Udler MS, McCarthy MI, Florez JC, Mahajan A. Genetic risk scores for diabetes diagnosis and precision medicine. Endocr Rev. 2019;40:1500–20. https://doi.org/10.1210/er.2019-00088.

Article  PubMed  PubMed Central  Google Scholar 

Hivert MF, Jablonski KA, Perreault L, Saxena R, McAteer JB, Franks PW, et al. Updated genetic score based on 34 confirmed type 2 diabetes Loci is associated with diabetes incidence and regression to normoglycemia in the Diabetes Prevention Program. Diabetes. 2011;60:1340–8. https://doi.org/10.2337/db10-1119.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50:1219–24. https://doi.org/10.1038/s41588-018-0183-z.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018;50:1505–13. https://doi.org/10.1038/s41588-018-0241-6.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Davies MJ, D’Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, Management of hyperglycaemia in type 2 diabetes, et al. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2018;2018(61):2461–98. https://doi.org/10.1007/s00125-018-4729-5.

Article  Google Scholar 

Nathan DM, Buse JB, Kahn SE, Krause-Steinrauf H, Larkin ME, Staten M, et al. Rationale and design of the glycemia reduction approaches in diabetes: a comparative effectiveness study (GRADE). Diabetes Care. 2013;36:2254–61. https://doi.org/10.2337/dc13-0356.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Pearson ER, Flechtner I, Njølstad PR, Malecki MT, Flanagan SE, Larkin B, et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med. 2006;355:467–77. https://doi.org/10.1056/NEJMoa061759.

CAS  Article  PubMed  Google Scholar 

Steele AM, Shields BM, Wensley KJ, Colclough K, Ellard S, Hattersley AT. Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia. JAMA. 2014;311:279–86. https://doi.org/10.1001/jama.2013.283980.

CAS  Article  PubMed  Google Scholar 

Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355:2427–43. https://doi.org/10.1056/NEJMoa066224.

CAS  Article  PubMed  Google Scholar 

Pavkov ME, Hanson RL, Knowler WC, Bennett PH, Krakoff J, Nelson RG. Changing patterns of type 2 diabetes incidence among Pima Indians. Diabetes Care. 2007;30:1758–63. https://doi.org/10.2337/dc06-2010.

Article  PubMed  Google Scholar 

Zhou K, Donnelly L, Yang J, Li M, Deshmukh H, Van Zuydam N, et al. Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis. Lancet Diabetes Endocrinol. 2014;2:481–7. https://doi.org/10.1016/s2213-8587(14)70050-6.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50:81–98. https://doi.org/10.2165/11534750-000000000-00000.

CAS  Article  PubMed  Google Scholar 

Kerb R, Brinkmann U, Chatskaia N, Gorbunov D, Gorboulev V, Mornhinweg E, et al. Identification of genetic variations of the human organic cation transporter hOCT1 and their functional consequences. Pharmacogenetics. 2002;12:591–5. https://doi.org/10.1097/00008571-200211000-00002.

CAS  Article  PubMed  Google Scholar 

Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA, et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest. 2007;117:1422–31. https://doi.org/10.1172/jci30558.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhou K, Donnelly LA, Kimber CH, Donnan PT, Doney ASF, Leese G, et al. Reduced-function SLC22A1 polymorphisms encoding organic cation transporter 1 and glycemic response to metformin: a GoDARTS study. Diabetes. 2009;58:1434–9. https://doi.org/10.2337/db08-0896.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Christensen MMH, Brasch-Andersen C, Green H, Nielsen F, Damkier P, Beck-Nielsen H, et al. The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet Genomics. 2011;21:837–50. https://doi.org/10.1097/FPC.0b013e32834c0010.

CAS  Article  PubMed  Google Scholar 

Dujic T, Zhou K, Donnelly LA, Tavendale R, Palmer CN, Pearson ER. Association of organic cation transporter 1 with intolerance to metformin in type 2 diabetes: a GoDARTS study. Diabetes. 2015;64:1786–93. https://doi.org/10.2337/db14-1388.

CAS 

留言 (0)

沒有登入
gif