Flotation surface chemistry of water-soluble salt minerals: from experimental results to new perspectives

The flotation separation of water-soluble salt minerals has to be conducted under the condition of saturation in brines which represents a challenging but exciting topic of colloid and surface chemistry. Despite several proposals on explaining the success of this industrial application for many decades, our understanding of the flotation separation is still far from complete yet, owing to the complexity of the highly selective collection of salt crystals by air bubbles in brines. Here, we thoroughly review the experimental results for halogen, oxyanion, and double salts and match them with the proposed theories on the flotation of soluble salts to identify the agreed and disagreed cases. The experimental results show that the flotation of these salts varies from collectors (surfactants applied to control the crystal hydrophobicity) to collectors and is strongly affected by the brine ion composition and pH conditions. We find some exceptional flotation results that cannot be simply explained by the crystal surface charge and wettability. Furthermore, we outline several disputes and discrepancies between the experiments and the theories when different collectors are applied. Apart from the extensive consideration of surface hydration, the presence of external ion species exhibits ubiquitous effects on the surface properties of salt crystals and the colloidal properties of collectors. We conclude that the interactions between salt ions, water molecules, collectors, and salt crystals must be considered more thoroughly, and the activity of collectors at the air-liquid interface should also be the focus. Advanced techniques such as molecular dynamics simulation, atomic force microscopy, X-ray photoelectron spectroscopy, and sum-frequency generation spectroscopy are expected to be promising research tools for future studies.

留言 (0)

沒有登入
gif