Industry 5.0 in Orthopaedics

Akundi, A., Euresti, D., Luna, S., Ankobiah, W., Lopes, A., & Edinbarough, I. (2022). State of industry 5.0—Analysis and identification of current research trends. Applied System Innovation, 5(1), 27.

Article  Google Scholar 

Demir, K. A., Döven, G., & Sezen, B. (2019). Industry 5.0 and human-robot co-working. Procedia Computer Science, 158, 688–695.

Article  Google Scholar 

Nahavandi, S. (2019). Industry 5.0—A human-centric solution. Sustainability, 11(16), 4371.

Article  Google Scholar 

Kua, J., Arora, C., Loke, S. W., Fernando, N., & Ranaweera, C. (2021). Internet of things in space: A review of opportunities and challenges from satellite-aided computing to digitally-enhanced space living. arXiv

Jafari, N., Azarian, M., & Yu, H. (2022). Moving from industry 4.0 to Industry 5.0: What are the implications for smart logistics? Logistics, 6(2), 26.

Article  Google Scholar 

Haleem, A., & Javaid, M. (2019). Industry 5.0 and its applications in orthopaedics. Journal of Clinical Orthopaedics and Trauma, 10(4), 807–808.

PubMed  Article  Google Scholar 

Haleem, A., & Javaid, M. (2019). Industry 5.0 and its expected applications in medical field. Current Medicine Research and Practice, 9(4), 167–169.

Article  Google Scholar 

Knudsen, M., & Kai̇vo-Oja, J. (2020). Collaborative robots: Frontiers of current literature. Journal of Intelligent Systems: Theory and Applications, 3(2), 13–20.

Google Scholar 

Kartsakli, E., Lalos, A. S., Antonopoulos, A., Tennina, S., Di Renzo, M., Alonso, L., & Verikoukis, C. (2015). 20-Machine-to-Machine (M2M) Communications for e-Health Applications. In C. Antón-Haro & M. Dohler (Eds.), Machine-to-Machine (M2M) Communications (pp. 375–397). Woodhead Publishing.

Chapter  Google Scholar 

Shahzadi, S., Iqbal, M., Dagiuklas, T., & Qayyum, Z. U. (2017). Multi-access edge computing: Open issues, challenges and future perspectives. Journal of Cloud Computing, 6(1), 30.

Article  Google Scholar 

Wang, H., Wu, Y., Min, G., & Miao, W. (2022). A graph neural network-based digital twin for network slicing management. IEEE Transactions on Industrial Informatics, 18(2), 1367–1376.

Article  Google Scholar 

The Internet of Space (IoS): A Future Backbone for the Internet of Things? - IEEE Internet of Things. https://iot.ieee.org/newsletter/march-2016/the-internet-of-space-ios-a-future-backbone-for-the-internet-of-things.html. Accessed 22 May 2022.

Nain, G., Fouquet, F., Morin, B., Barais, O., & Jézéquel, J.-M. (2010). Integrating IoT and IoS with a Component-Based Approach. In: 2010 36th EUROMICRO Conference on Software Engineering and Advanced Applications (pp. 191–98).

Akyildiz, I. F., & Kak, A. (2019). The Internet of Space Things/CubeSats: A ubiquitous cyber-physical system for the connected world. Computer Networks, 150, 134–149.

Article  Google Scholar 

Nguyen, T., Lovén, L., Partala, J., & Pirttikangas, S. (2021). The intersection of blockchain and 6g technologies. In Y. Wu, S. Singh, T. Taleb, A. Roy, H. S. Dhillon, M. R. Kanagarathinam, & A. De (Eds.), 6G mobile wireless networks computer communications and networks (pp. 393–417). Springer International Publishing.

Google Scholar 

Frankel, R. I. (1996). Centennial of Röntgen’s discovery of x-rays. Western Journal of Medicine, 164(6), 497–501.

CAS  PubMed  PubMed Central  Google Scholar 

Scatliff, J. H., & Morris, P. J. (2014). From Roentgen to magnetic resonance imaging: The history of medical imaging. North Carolina Medical Journal, 75(2), 111–113.

PubMed  Article  Google Scholar 

Haleem, A., Javaid, M., & Vaishya, R. (2018). 4D printing and its applications in orthopaedics. Journal of Clinical Orthopaedics and Trauma, 9(3), 275–276.

PubMed  PubMed Central  Article  Google Scholar 

Industry 5.0 opportunities and challenges for factory owners.https://digitalya.co/blog/industry-5-opportunities-and-challenges/. Published April 5, 2019. Accessed 25 May 2022.

Grabowska, S., Saniuk, S., & Gajdzik, B. (2022). Industry 5.0: improving humanization and sustainability of Industry 4.0. Scientometrics, 127, 3117–3144.

Article  PubMed  PubMed Central  Google Scholar 

Maddikunta, P. K. R., Pham, Q.-V., Prabadevi, B., Deepa, N., Dev, K., Gadekallu, T. R., Ruby, R., & Liyanage, M. (2022). Industry 5.0: A survey on enabling technologies and potential applications. Journal of Industrial Information Integration, 26, 100257. 

Article  Google Scholar 

Yes, Industry 5.0 is Already on the Horizon | Machine Design.https://www.machinedesign.com/automation-iiot/article/21835933/yes-industry-50-is-already-on-the-horizon. Accessed 26 Apr 2022.

Lalehzarian, S. P., Gowd, A. K., & Liu, J. N. (2021). Machine learning in orthopaedic surgery. World Journal of Orthopedics, 12(9), 685–699.

PubMed  PubMed Central  Article  Google Scholar 

Goh, J. C., Ho, N. C., & Bose, K. (1990). Principles and applications of Computer-Aided Design and Computer-Aided Manufacturing (CAD/CAM) technology in orthopaedics. Annals of the Academy of Medicine, Singapore, 19(5), 706–713.

CAS  PubMed  Google Scholar 

Nayak, S., & Das, R. K. (2020). Application of artificial intelligence (AI) in prosthetic and orthotic rehabilitation. IntechOpen.

Book  Google Scholar 

Alrazgan, M. (2022). Internet of medical things and edge computing for improving healthcare in smart cities. Mathematical Problems in Engineering, 2022, e5776954.

Article  Google Scholar 

Thomson, C., & Beale, R. (2021). Is blockchain ready for orthopaedics? A systematic review. Journal of Clinical Orthopaedics and Trauma, 23, 101615.

PubMed  Article  Google Scholar 

Shrestha, A. K., Vassileva, J., & Deters R. (2022). A blockchain platform for user data sharing ensuring user control and incentives. Front Blockchain, 3, 497985.

Atlam, H. F., Walters, R. J., & Wills, G. B. (2018). Fog computing and the internet of things: A review. Big Data and Cognitive Computing, 2(2), 10.

Article  Google Scholar 

Azzam, N., Boukebbab, S., Chaves-Jacob, J., & Linares, J.-M. (2014). Adaptation trajectory in five axes machine to manufacture orthopedic prostheses. AIP Conference Proceedings, 1618(1), 639–642.

Article  Google Scholar 

Federer, S. J., & Jones, G. G. (2021). Artificial intelligence in orthopaedics: A scoping review. PLoS ONE, 16(11), e0260471.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Han, X.-G., & Tian, W. (2019). Artificial intelligence in orthopedic surgery: Current state and future perspective. Chinese Medical Journal, 132(21), 2521–2523.

PubMed  PubMed Central  Article  Google Scholar 

Makhni, E. C., Makhni, S., & Ramkumar, P. N. (2021). Artificial intelligence for the orthopaedic surgeon: An overview of potential benefits, limitations, and clinical applications. JAAOS - Journal of the American Academy of Orthopaedic Surgeons, 29(6), 235–243.

PubMed  Article  Google Scholar 

Myers, T. G., Ramkumar, P. N., Ricciardi, B. F., Urish, K. L., Kipper, J., & Ketonis, C. (2020). Artificial intelligence and orthopaedics: An introduction for clinicians. JBJS, 102(9), 830–840.

Article  Google Scholar 

Kencebay, B. (2020). Robotization and welfare trends in future. IntechOpen.

Book  Google Scholar 

eCential Robotics Is Giving Surgeons a Hand | Orthopedics This Week.https://ryortho.com/breaking/ecential-robotics-is-giving-surgeons-a-hand/. Accessed 25 May 2022.

Haleem, A., & Javaid, M. (2019). Expected role of four-dimensional (4D) CT and four-dimensional (4D) MRI for the manufacturing of smart orthopaedics implants using 4D printing. Journal of Clinical Orthopaedics and Trauma, 10(Suppl 1), S234–S235.

PubMed  PubMed Central  Article  Google Scholar 

Rasch, H., Falkowski, A. L., Forrer, F., Henckel, J., & Hirschmann, M. T. (2013). 4D-SPECT/CT in orthopaedics: a new method of combined quantitative volumetric 3D analysis of SPECT/CT tracer uptake and component position measurements in patients after total knee arthroplasty. Skeletal Radiology, 42(9), 1215–1223.

PubMed  Article  Google Scholar 

Haleem, A., Javaid, M., Singh, R. P., & Suman, R. (2021). Significant roles of 4D printing using smart materials in the field of manufacturing. Advanced Industrial and Engineering Polymer Research, 4(4), 301–311.

Article  Google Scholar 

Alshahrani, H. A. (2021). Review of 4D printing materials and reinforced composites: Behaviors, applications and challenges. Journal of Science: Advanced Materials and Devices, 6(2), 167–185.

Google Scholar 

Anas, S., Khan, M. Y., Rafey, M., & Faheem, K. (2022). Concept of 5D printing technology and its applicability in the healthcare industry. Materials Today: Proceedings, 56, 1726–1732.

Google Scholar 

Haleem, A., Javaid, M., & Vaishya, R. (2019). 5D printing and its expected applications in Orthopaedics. Journal of Clinical Orthopaedics and Trauma, 10(4), 809–810.

PubMed  Article  Google Scholar 

Mitsuishi, M., Sugita, N., Fujiwara, K., Abe, N., Ozaki, T., Suzuki, M., Moriya, H., Inoue, T., Kuramoto, K., Nakashima, Y., & Tanimoto, K. (2007). Development of a medical CAD/CAM system for orthopedic surgery. CIRP Annals, 56(1), 405–410.

Article  Google Scholar 

Sonanis, S. V. (2008). Three–dimensional auto computer aided designing (auto-cad): a new tool for orthopaedic surgeons. Orthopaedic Proceedings, 90-B(SUPP_III), 563–564.

Google Scholar 

Wong, K. C., Kumta, S. M., Leung, K. S., Ng, K. W., Ng, E. W. K., & Lee, K. S. (2010). Integration of CAD/CAM planning into computer assisted orthopaedic surgery. Computer Aided Surgery, 15(4–6), 65–74.

CAS  PubMed  Article  Google Scholar 

Tamay, D. G., DursunUsal, T., Alagoz, A. S., Yucel, D., Hasirci, N., & Hasirci, V. (2019). 3D and 4D printing of polymers for tissue engineering applications. Frontiers in Bioengineering and Biotechnology, 7, 164.

PubMed  PubMed Central  Article  Google Scholar 

Saska, S., Pilatti, L., Blay, A., & Shibli, J. A. (2021). Bioresorbable polymers: advanced materials and 4D printing for tissue engineering. Polymers, 13(4), 563.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ahmed, A., Arya, S., Gupta, V., Furukawa, H., & Khosla, A. (2021). 4D printing: Fundamentals, materials, applications and challenges. Polymer, 228, 123926.

CAS  Article  Google Scholar 

Wan, Z., Zhang, P., Liu, Y., Lv, L., & Zhou, Y. (2020). Four-dimensional bioprinting: Current developments and applications in bone tissue engineering. Acta Biomaterialia, 101, 26–42.

CAS  PubMed  Article  Google Scholar 

Ashammakhi, N., Ahadian, S., Zengjie, F., Suthiwanich, K., Lorestani, F., Orive, G., Ostrovidov, S., & Khademhosseini, A. (2018). Advances and future perspectives in 4D bioprinting. Biotechnology Journal, 13(12), e1800148. 

PubMed  PubMed Central  Article  CAS  Google Scholar 

Tarnita, D., Tarnita, D., & Bolcu, D. (2011). Orthopaedic modular implants based on shape memory alloys. IntechOpen.

Book  Google Scholar 

Pfeifer, R., Müller, C. W., Hurschler, C., Kaierle, S., Wesling, V., & Haferkamp, H. (2013). Adaptable orthopedic shape memory implants. Procedia CIRP, 5, 253–258.

Article 

留言 (0)

沒有登入
gif