Causes of polymyxin treatment failure and new derivatives to fill the gap

Benedict RG, Langlykke AF. Antibiotic activity of Bacillus polymyxa. J Bacteriol. 1947;54:24.

CAS  PubMed  Google Scholar 

Ainsworth GC, Brown AM, Brownlee G. Aerosporin, an antibiotic produced by Bacillus aerosporus greer. Nature 1947;159:263.

CAS  PubMed  Article  Google Scholar 

Stansly PG, Shepherd RG, White HJ. Polymyxin: a new chemotherapeutic agent. Bull Johns Hopkins Hosp. 1947;81:43–54.

CAS  PubMed  Google Scholar 

Fleming A. On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol. 1929;10:226–36.

CAS  PubMed Central  Google Scholar 

Velkov T, Thompson PE, Azad MAK, Roberts KD, Bergen PJ. History, Chemistry and Antibacterial Spectrum. In:Li J, Nation RL, Kaye KS, editors. Polymyxin antibiotics: from laboratory bench to bedside, Vol 1145. Cham, Switzerland: Springer International Publishing; 2019. p. 15–36.

WHO. World Health Organization Model List of Essential Medicines – 22nd List, 2021. 2021. https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2021.02

FDA. FDA Approved Drug Products. Label and approval history for Coly-Mycin M, NDA 050108. 2017. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=050108.

Nation RL, et al. Updated US and European Dose Recommendations for Intravenous Colistin: How Do They Perform? Clin Infect Dis. 2015;62:552–8.

PubMed  PubMed Central  Article  Google Scholar 

Zavascki AP, Goldani LZ, Li J, Nation RL. Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother. 2007;60:1206–15.

CAS  PubMed  Article  Google Scholar 

Levin AS, et al. Intravenous colistin as therapy for nosocomial infections caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Clin Infect Dis. 1999;28:1008–11.

CAS  PubMed  Article  Google Scholar 

Markou N, et al. Intravenous colistin in the treatment of sepsis from multiresistant Gram-negative bacilli in critically ill patients. Crit Care. 2003;7:R78–83.

PubMed  PubMed Central  Article  Google Scholar 

Garnacho-Montero J, et al. Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: a comparison with imipenem-susceptible VAP. Clin Infect Dis. 2003;36:1111–8.

CAS  PubMed  Article  Google Scholar 

Lu L-C, Chang F-Y, Lv G-Z, Lan S-H. Effectiveness and Safety of Compound Polymyxin B Ointment in Treatment of Burn Wounds: A Meta-analysis. J Burn Care Res. 2021;43:453–61.

Article  Google Scholar 

Johansen HK, Moskowitz SM, Ciofu O, Pressler T, Høiby N. Spread of colistin resistant non-mucoid Pseudomonas aeruginosa among chronically infected Danish cystic fibrosis patients. J Cyst Fibros. 2008;7:391–7.

PubMed  Article  Google Scholar 

Arduino SM, et al. 2012. Transposons and integrons in colistin-resistant clones of Klebsiella pneumoniae and Acinetobacter baumannii with epidemic or sporadic behaviour. J Med Microbiol. 2012;61:1417–20.

PubMed  Article  Google Scholar 

Mammina C, et al. Ongoing spread of colistin-resistant Klebsiella pneumoniae in different wards of an acute general hospital, Italy, June to December 2011. Eur Surveill. 2012;17:20248.

Article  Google Scholar 

Thet KT, et al. Colistin heteroresistance in carbapenem-resistant Acinetobacter baumannii clinical isolates from a Thai university hospital. World J Microbiol Biotechnol. 2020;36:102.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hong Y-K, Kim H, Ko KS. Two types of colistin heteroresistance in Acinetobacter baumannii isolates. Emerg Microbes Infect. 2020;9:2114–23.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Howard-Anderson J, et al. Prevalence of colistin heteroresistance in carbapenem-resistant Pseudomonas aeruginosa and association with clinical outcomes in patients: an observational study. J Antimicrob Chemother. 2022;77:793–8.

CAS  PubMed  Article  Google Scholar 

Lin J, et al. Resistance and Heteroresistance to Colistin in Pseudomonas aeruginosa Isolates from Wenzhou, China. Antimicrob Agents Chemother. 2019;63:e00556–19.

CAS  PubMed  PubMed Central  Google Scholar 

Hermes DM, et al. Evaluation of heteroresistance to polymyxin B among carbapenem-susceptible and -resistant Pseudomonas aeruginosa. J Med Microbiol. 2013;62:1184–9.

PubMed  Article  Google Scholar 

Bardet L, et al. Deciphering Heteroresistance to Colistin in a Klebsiella pneumoniae Isolate from Marseille, France. Antimicrob Agents Chemother. 2017;61:e00356–17.

PubMed  PubMed Central  Article  Google Scholar 

Morales-León F, Lima CA, González-Rocha G, Opazo-Capurro A, Bello-Toledo H. Colistin Heteroresistance among Extended Spectrum β-lactamases-Producing Klebsiella pneumoniae. Microorganisms 2020;8:E1279.

PubMed  Article  CAS  Google Scholar 

Cheong HS, Kim SY, Wi YM, Peck KR, Ko KS. Colistin Heteroresistance in Klebsiella Pneumoniae Isolates and Diverse Mutations of PmrAB and PhoPQ in Resistant Subpopulations. J Clin Med. 2019;8:1444.

CAS  PubMed Central  Article  Google Scholar 

Li J, et al. Emergence of polymyxin B-heteroresistant hypervirulent Klebsiella pneumoniae from an individual in the community with asymptomatic bacteriuria. BMC Microbiol. 2022;22:47.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Band VI, et al. Carbapenem-Resistant Klebsiella pneumoniae Exhibiting Clinically Undetected Colistin Heteroresistance Leads to Treatment Failure in a Murine Model of Infection. mBio. 2018;9:e02448–17.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Liao W, et al. Resistance and Heteroresistance to Colistin in Escherichia coli Isolates from Wenzhou, China. Infect Drug Resist. 2020;13:3551–61.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Band VI, et al. Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae. Nat Microbiol. 2016;1:16053.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Winfield MD, Groisman EA. Phenotypic differences between Salmonella and Escherichia coli resulting from the disparate regulation of homologous genes. PNAS. 2004;101:17162–7.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Guckes KR, et al. Signaling by two-component system noncognate partners promotes intrinsic tolerance to polymyxin B in uropathogenic Escherichia coli. Sci Signal. 2017;10:eaag1775.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Yang B, et al. Identification of novel PhoP-PhoQ regulated genes that contribute to polymyxin B tolerance in Pseudomonas aeruginosa. Microorganisms. 2021;9:344.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ryan RP, et al. Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Mol Microbiol. 2008;68:75–86.

CAS  PubMed  Article  Google Scholar 

Cui P, et al. Disruption of membrane by colistin kills uropathogenic Escherichia coli persisters and enhances killing of other antibiotics. Antimicrob Agents Chemother. 2016;60:6867–71.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Baek MS, Chung ES, Jung DS, Ko KS. Effect of colistin-based antibiotic combinations on the eradication of persister cells in Pseudomonas aeruginosa. J Antimicrob Chemother. 2020;75:917–24.

CAS  PubMed  Article  Google Scholar 

Kashyap S, Kaur S, Sharma P, Capalash N. Combination of colistin and tobramycin inhibits persistence of Acinetobacter baumannii by membrane hyperpolarization and down-regulation of efflux pumps. Microbes Infect. 2021;23:104795.

CAS  PubMed  Article  Google Scholar 

Niu H, et al. Identification of Anti-Persister Activity against Uropathogenic Escherichia coli from a Clinical Drug Library. Antibiotics. 2015;4:179–87.

PubMed  PubMed Central  Article  Google Scholar 

Brown P, Dawson MJ. Development of new polymyxin derivatives for multi-drug resistant Gram-negative infections. J Antibiot. 2017;70:386–94.

CAS  Article  Google Scholar 

Eckburg PB, et al. Safety, tolerability, pharmacokinetics, and drug interaction potential of SPR741, an intravenous potentiator, after single and multiple ascending doses and when combined with β-Lactam antibiotics in healthy subjects. Antimicrob Agents Chemother. 2019;63:e00892–19.

CAS  PubMed  PubMed Central  Google Scholar 

Butler MS, Paterson DL. Antibiotics in the clinical pipeline in October 2019. J Antibiot. 2020;73:329–64.

CAS  Article  Google Scholar 

Spero Therapeutics. Study to Assess the Intrapulmonary Pharmacokinetics of SPR206 in Healthy Volunteers. Clinical Trial Identifier NCT04868292. 2021. https://www.bolderscience.com/trial/nct04868292/.

Spero Therapeutics. 2021. Phase 1 Study of PK and Safety of SPR206 in Subjects With Various Degrees Of Renal Function. Clinical Trial Identifier NCT04865393.

Spero Therapeutics. A First in Human Study of the Safety and Tolerability of Single and Multiple Doses of SPR206 in Healthy Volunteers. Clinical Trial Identifier NCT03792308. 2018. https://www.bolderscience.com/trial/nct03792308/

Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test: proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek. 1993;64:253–60.

CAS  PubMed  Article  Google Scholar 

Jones TSG. The chemical nature of aerosporin. Biochem J. 1948;42:xxxv.

留言 (0)

沒有登入
gif