Antibacterial properties and in silico modeling perspective of nano ZnO transported oxytetracycline-Zn2+ complex [ZnOTc]+ against oxytetracycline-resistant Aeromonas hydrophila

Welling V, Lundeheim N, Bengtsson B. A pilot study in Sweden on efficacy of benzylpenicillin, oxytetracycline, and florfenicol in treatment of acute undifferentiated respiratory disease in calves. Antibiotics. 2020;9:736.

CAS  PubMed Central  Article  Google Scholar 

Watts KM, Lahiri P, Arrazuria R, De Buck J, Knight CG, Orsel K, Barkema HW, Cobo ER. Oxytetracycline reduces inflammation and treponeme burden whereas vitamin D3 promotes β-defensin expression in bovine infectious digital dermatitis. Cell Tissue Res. 2020;379:337–48.

CAS  PubMed  Article  Google Scholar 

Kumar G, Menanteau-Ledouble S, Saleh M, El-Matbouli M. Yersinia ruckeri, the causative agent of enteric redmouth disease in fish. Vet Res. 2015;46:103.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Uno K. Pharmacokinetic study of oxytetracycline in healthy and vibriosis-infected ayu (Plecoglossus altivelis). Aquaculture. 1996;143:33–42.

CAS  Article  Google Scholar 

Abraham TJ, Sasmal D, Banerjee T. Notes bacterial flora associated with diseased fish and their antibiogram. J Indian Fish Assoc. 2004;31:177–80.

Google Scholar 

Brodersen DE, Clemons WM, Jr, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell. 2000;103:1143–54.

CAS  PubMed  Article  Google Scholar 

Klima CL, Holman DB, Cook SR, Conrad CC, Ralston BJ, Allan N, Anholt RM, Niu YD, Stanford K, Hannon SJ, Booker CW. Multidrug resistance in Pasteurellaceae associated with bovine respiratory disease mortalities in North America from 2011 to 2016. Front Microbiol. 2020;11:606438.

PubMed  PubMed Central  Article  Google Scholar 

Shahbazi P, Nouri Gharajalar S, Mohebbi K, Taeb J, Hashemzadeh Farhang H, Nikvand AA, Norouzi R. First survey on the presence and distribution of oxytetracycline-resistance genes in Anaplasma species. Acta Parasitol. 2021;66:501–7.

CAS  PubMed  Article  Google Scholar 

Dang H, Zhao J, Song L, Chen M, Chang Y. Molecular characterizations of chloramphenicol-and oxytetracycline-resistant bacteria and resistance genes in mariculture waters of China. Mar Pollut Bull. 2009;58:987–94.

CAS  PubMed  Article  Google Scholar 

Dang H, Zhang X, Song L, Chang Y, Yang G. Molecular determination of oxytetracycline‐resistant bacteria and their resistance genes from mariculture environments of China. J Appl Microbiol. 2007;103:2580–92.

CAS  PubMed  Article  Google Scholar 

Dang H, Zhang X, Song L, Chang Y, Yang G. Molecular characterizations of oxytetracycline resistant bacteria and their resistance genes from mariculture waters of China. Mar Pollut Bull. 2006;52:1494–503.

CAS  PubMed  Article  Google Scholar 

Grossman TH. Tetracycline antibiotics and resistance. Cold Spring Harb Perspect Med. 2016;6:a025387.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65:232–60.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kisker C, Hinrichs W, Tovar K, Hillen W, Saenger W. The complex formed between tet repressor and tetracycline-Mg2| ihsbop|+ reveals mechanism of antibiotic resistance. J Mol Biol. 1995;247:260–80.

CAS  PubMed  Article  Google Scholar 

Takahashi M, Altschmied L, Hillen W. Kinetic and equilibrium characterization of the tet repressor-tetracycline complex by fluorescence measurements: evidence for divalent metal ion requirement and energy transfer. J Mol Biol. 1986;187:341–8.

CAS  PubMed  Article  Google Scholar 

Hinrichs W, Kisker C, Düvel M, Müller A, Tovar K, Hillen W, Saenger W. Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science. 1994;264:418–20.

CAS  PubMed  Article  Google Scholar 

Dias AM, da Silva FG, de Figueiredo Monteiro AP, Pinzón-García AD, Sinisterra RD, Cortés ME. Polycaprolactone nanofibers loaded oxytetracycline hydrochloride and zinc oxide for treatment of periodontal disease. Mater Sci Eng C. 2019;103:109798.

CAS  Article  Google Scholar 

De Oliveira DM, Forde BM, Phan MD, Steiner B, Zhang B, Zuegg J, El-Deeb IM, Li G, Keller N, Brouwer S, Harbison-Price N. Rescuing tetracycline class antibiotics for the treatment of multidrug-resistant Acinetobacter baumannii pulmonary infection. MBio. 2022;13:e03517–21.

PubMed Central  Article  Google Scholar 

Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release. 2011;156:128–45.

CAS  PubMed  Article  Google Scholar 

Ghosh D, Chandra S, Chakraborty A, Ghosh SK, Pramanik P. A novel graphene oxide-para amino benzoic acid nanosheet as effective drug delivery system to treat drug resistant bacteria. Int J Pharm Sci Drug Res. 2010;2:127–33.

CAS  Google Scholar 

Mukherjee R, Patra M, Dutta D, Banik M, Basu T. Tetracycline-loaded calcium phosphate nanoparticle (Tet-CPNP): rejuvenation of an obsolete antibiotic to further action. Biochim Biophys Acta Gen Subj. 2016;1860:1929–41.

CAS  Article  Google Scholar 

Assali M, Zaid AN, Abdallah F, Almasri M, Khayyat R. Single-walled carbon nanotubes-ciprofloxacin nanoantibiotic: strategy to improve ciprofloxacin antibacterial activity. Int J Nanomed. 2017;12:6647.

CAS  Article  Google Scholar 

Carver JA, Simpson AL, Rathi RP, Normil N, Lee AG, Force MD, Fiocca KA, Maley CE, DiJoseph KM, Goldstein AL, Attari AA. Functionalized single-walled carbon nanotubes and nanographene oxide to overcome antibiotic resistance in tetracycline-resistant Escherichia coli. ACS Appl Nano Mater. 2020;3:3910–21.

CAS  Article  Google Scholar 

Lin L, Sun L, Ali F, Guo Z, Zhang L, Lin W, Lin X. Proteomic analysis of alterations in Aeromonas hydrophila outer membrane proteins in response to oxytetracycline stress. Micro Drug Resist. 2018;24:1067–74.

CAS  Article  Google Scholar 

Li W, Zhao Y, Yu J, Lin L, Ramanathan S, Wang G, Lin X, Pang H. TonB-dependent receptors affect the spontaneous oxytetracycline resistance evolution in Aeromonas hydrophila. J Proteome Res. 2020;20:154–63.

CAS  PubMed  Article  Google Scholar 

Scarano C, Piras F, Virdis S, Ziino G, Nuvoloni R, Dalmasso A, De Santis EP, Spanu C. Antibiotic resistance of Aeromonas ssp. strains isolated from Sparus aurata reared in Italian mariculture farms. Int J Food Microbiol. 2018;284:91–7.

CAS  PubMed  Article  Google Scholar 

Syrova E, Kohoutova L, Dolejska M, Papezikova I, Kutilova I, Cizek A, Navratil S, Minarova H, Palikova M. Antibiotic resistance and virulence factors in mesophilic Aeromonas spp. from Czech carp fisheries. J Appl Microbiol. 2018;125:1702–13.

CAS  Article  Google Scholar 

Venu Gopal VR, Kamila S. Effect of temperature on the morphology of ZnO nanoparticles: a comparative study. Appl Nanosci. 2017;7:75–82.

CAS  Article  Google Scholar 

Sarkar DJ, Sarkar SD, Das BK, Manna RK, Behera BK, Samanta S. Spatial distribution of meso and microplastics in the sediments of river Ganga at eastern India. Sci Total Environ. 2019;694:133712.

CAS  PubMed  Article  Google Scholar 

Korst JJ, Johnston JD, Butler K, Bianco EJ, Conover LH, Woodward RB. The total synthesis of dl-6-demethyl-6-deoxytetracycline. J Am Chem Soc. 1968;90:439–57.

CAS  Article  Google Scholar 

Muxfeldt H, Hardtmann G, Kathawala F, Vedejs E, Mooberry JB. Tetracyclines. VII. Total synthesis of dl-terramycin. J Am Chem Soc. 1968;90:6534–6.

CAS  PubMed  Article  Google Scholar 

de Moura Ferraz LR, Tabosa AÉ, da Silva Nascimento DD, Ferreira AS, de Albuquerque Wanderley Sales V, Silva JY, Júnior SA, Rolim LA, de Souza Pereira JJ, Rolim-Neto PJ. ZIF-8 as a promising drug delivery system for benznidazole: development, characterization, in vitro dialysis release and cytotoxicity. Sci Rep. 2020;10:1–4.

Article  CAS  Google Scholar 

Parvekar P, Palaskar J, Metgud S, Maria R, Dutta S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater Investig Dent. 2020;7:105–9.

CAS  PubMed  PubMed Central  Google Scholar 

Holdsworth SD, Simpson R. Kinetics of microbial death and factors for quality attributes. In: Barbosa-Cánovas GV, editor. Thermal processing of packaged foods. Cham: Springer; 2016. pp. 89–124.

Gogoi A, Anki Reddy K, Senthilmurugan S, Kumar, Mondal P. Dehydration of acetic acid using layered graphene oxide (GO) membrane through forward osmosis (FO) process: a molecular dynamics study. Mol Simul. 2020;46:1500–8.

CAS  Article  Google Scholar 

Boyd PG, Moosavi SM, Witman M, Smit B. Force-field prediction of materials properties in metal-organic frameworks. J Phys Chem Lett. 2017;8:357–63.

CAS  PubMed  Article  Google Scholar 

Werten S, Schneider J, Palm GJ, Hinrichs W. Modular organisation of inducer recognition and allostery in the tetracycline repressor. FEBS J. 2016;283:2102–14.

CAS  PubMed  Article  Google Scholar 

Webb B, Sali A. Protein structure modeling with MODELLER. Methods Mol Biol. 2014;1137:1–15.

CAS  PubMed  Article  Google Scholar 

Ain-Ali QU, Mushtaq N, Amir R, Gul A, Tahir M, Munir F. Genome-wide promoter analysis, homology modeling and protein interaction network of dehydration responsive element binding (DREB) gene family in Solanum tuberosum. PLoS ONE. 2021;16:e0261215.

CAS  PubMed  PubMed Central  Article 

留言 (0)

沒有登入
gif