A Deep Cognitive Venetian Blinds System for Automatic Estimation of Slat Orientation

Lai K, Wang W, Giles H. Solar shading performance of window with constant and dynamic shading function in different climate zones. Sol Energy. 2017;147:113–25.

Article  Google Scholar 

Luo S, Li H, Mao Y, Yang C. Experimental research on a novel sun shading & solar energy collecting coupling device for inpatient building in hot summer and cold winter climate zone in China. Appl Therm Eng. 2018;142:89–99.

Article  Google Scholar 

Al-Masrani SM, Al-Obaidi KM, Zalin NA, Isma MA. Design optimisation of solar shading systems for tropical office buildings: challenges and future trends. Sol Energy. 2018;170:849–72.

Article  Google Scholar 

Huang L, Wu J. Effects of the splayed window type on daylighting and solar shading. Build Environ. 2014;81:436–47.

Article  Google Scholar 

Evangelisti L, Guattari C, Asdrubali F, de Lieto Vollaro R. An experimental investigation of the thermal performance of a building solar shading device. J Build Eng. 2020;28:101089.

Aste N, Adhikari RS, Del Pero C. An algorithm for designing dynamic solar shading system. Energy Procedia. 2012;30:1079–89.

Article  Google Scholar 

Hashemi A, Khatami N. Effects of solar shading on thermal comfort in low-income tropical housing. Energy Procedia. 2017;111:235–44.

Article  Google Scholar 

Grynning S, Time B, Matusiak B. Solar shading control strategies in cold climates-heating, cooling demand and daylight availability in office spaces. Sol Energy. 2014;107:182–94.

Article  Google Scholar 

Nicoletti F, Carpino C, Cucumo MA, Arcuri N. The control of venetian blinds: a solution for reduction of energy consumption preserving visual comfort. Energies. 2020;13(7):1731.

Article  Google Scholar 

Paik J, Kim J, Yeo M, Kim K. A study on the occupants use of the blinds in office building. Journal of the Architectural Institute of Korea. 2006;22:311–8.

Google Scholar 

Koo SY, Yeo MS, Kim KW. Automated blind control to maximize the benefits of daylight in buildings. Build Environ. 2010;45(6):1508–20.

Article  Google Scholar 

Guillemin A, Molteni S. An energy-efficient controller for shading devices self-adapting to the user wishes. Build Environ. 2002;37(11):1091–7.

Article  Google Scholar 

Zhang S, Birru D. An open-loop venetian blind control to avoid direct sunlight and enhance daylight utilization. Sol Energy. 2012;86(3):860–6.

Article  Google Scholar 

Chan YC, Tzempelikos A. Efficient venetian blind control strategies considering daylight utilization and glare protection. Sol Energy. 2013;98:241–54.

Article  Google Scholar 

Karlsen L, Heiselberg P, Bryn I, Johra H. Solar shading control strategy for office buildings in cold climate. Energy Build. 2016;118:316–28.

Article  Google Scholar 

Carletti C, Sciurpi F, Pierangioli L, Asdrubali F, Pisello AL, Bianchi F, Sambuco S, Guattari C. Thermal and lighting effects of an external venetian blind: experimental analysis in a full scale test room. Build Environ. 2016;106:45–56.

Article  Google Scholar 

Al Touma A, Ouahrani D. Shading and day-lighting controls energy savings in offices with fully-glazed façades in hot climates. Energy Build. 2017;151:263–74.

Article  Google Scholar 

Eltaweel A, Su Y. Controlling venetian blinds based on parametric design; via implementing Grasshopper’s plugins: a case study of an office building in Cairo. Energy Build. 2017;139:31–43.

Article  Google Scholar 

Kunwar N, Cetin KS, Passe U, Zhou X, Li Y. Energy savings and daylighting evaluation of dynamic venetian blinds and lighting through full-scale experimental testing. Energy. 2020;197:117190.

Hu J, Olbina S. Illuminance-based slat angle selection model for automated control of split blinds. Build Environ. 2011;46(3):786–96.

Article  Google Scholar 

Yeon S, Yu B, Seo B, Yoon Y, Lee KH. Ann based automatic slat angle control of venetian blind for minimized total load in an office building. Sol Energy. 2019;180:133–45.

Article  Google Scholar 

Luo Z, Sun C, Dong Q, Yu J. An innovative shading controller for blinds in an open-plan office using machine learning. Build Environ. 2020;107529.

Bellia L, De Falco F, Minichiello F. Effects of solar shading devices on energy requirements of standalone office buildings for Italian climates. Appl Therm Eng. 2013;54(1):190–201.

Article  Google Scholar 

Crawley DB, Lawrie LK, Pedersen CO, Liesen RJ, Fisher DE, Strand RK, Taylor RD, Winkelmann R, Buhl W, Huang YJ et al. Energyplus, a new-generation building energy simulation program. In: Proceedings of Building Simulation ’99, vol. 1. 1999. p. 81–88.

Ghosh A, Neogi S. Effect of fenestration geometrical factors on building energy consumption and performance evaluation of a new external solar shading device in warm and humid climatic condition. Sol Energy. 2018;169:94–104.

Article  Google Scholar 

Loutzenhiser PG, Manz H, Carl S, Simmler H, Maxwell GM. Empirical validations of solar gain models for a glazing unit with exterior and interior blind assemblies. Energy and Buildings. 2008;40(3):330–40.

Article  Google Scholar 

Ieracitano C, Mammone N, Paviglianiti A, Morabito FC. A conditional Generative Adversarial Network and transfer learning-oriented anomaly classification system for electrospun nanofibers. Int J Neural Syst. S012906572250054X. https://doi.org/10.1142/S012906572250054X.

Ieracitano C, Mammone N, Versaci M, Varone G, Ali AR, Armentano A, Calabrese G, Ferrarelli A, Turano L, Tebala C, Hussain Z, Sheikh Z, Sheikh A, Sceni G, Hussain A, Morabito FC. A fuzzy-enhanced deep learning approach for early detection of Covid-19 pneumonia from portable chest X-ray images. Neurocomputing. 2022;481:202–215 S0925231222000741. https://doi.org/10.1016/j.neucom.2022.01.055.

Ieracitano C, Morabito FC, Hussain A, Mammone N. A hybrid-domain deep learning-based BCI for discriminating hand motion planning from EEG sources. Int J Neural Syst. 2021;31(09):2150038. https://doi.org/10.1142/S0129065721500386.

留言 (0)

沒有登入
gif