The neural bases for timing of durations

Buhusi, C. V. & Meck, W. H. What makes us tick? Functional and neural mechanisms of interval timing. Nat. Rev. Neurosci. 6, 755–765 (2005).

CAS  PubMed  Article  Google Scholar 

Merchant, H., Harrington, D. L. & Meck, W. H. Neural basis of the perception and estimation of time. Annu. Rev. Neurosci. 36, 313–336 (2013).

CAS  PubMed  Article  Google Scholar 

Grondin, S. Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Atten. Percept. Psychophys. 72, 561–582 (2010).

PubMed  Article  Google Scholar 

Gibbon, J., Malapani, C., Dale, C. L. & Gallistel, C. R. Toward a neurobiology of temporal cognition: advances and challenges. Curr. Opin. Neurobiol. 7, 170–184 (1997).

CAS  PubMed  Article  Google Scholar 

Ivry, R. B. & Schlerf, J. E. Dedicated and intrinsic models of time perception. Trends Cogn. Sci. 12, 273–280 (2008).

PubMed  PubMed Central  Article  Google Scholar 

Eichenbaum, H. Time cells in the hippocampus: a new dimension for mapping memories. Nat. Rev. Neurosci. 15, 732–744 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gallistel, C. R. The Organization of Learning (The MIT Press, 1990).

Teki, S., Gu, B. M. & Meck, W. H. The persistence of memory: how the brain encodes time in memory. Curr. Opin. Behav. Sci. 17, 178–185 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Fraisse, P. The Psychology of Time (Harper & Row, 1963).

Fraisse, P. Perception and estimation of time. Annu. Rev. Psychol. 35, 1–37 (1984).

CAS  PubMed  Article  Google Scholar 

Creelman, C. D. Human discrimination of auditory duration. J. Acoust. Soc. Am. 34, 582–593 (1962).

Article  Google Scholar 

Treisman, M. Temporal discrimination and the indifference interval: implications for a model of the “internal clock”. Psychol. Monogr. Gen. Appl. 77, 1–31 (1963).

CAS  Article  Google Scholar 

Gibbon, J., Church, R. M. & Meck, W. H. Scalar timing in memory. Ann. N. Y. Acad. Sci. 423, 52–77 (1984).

CAS  PubMed  Article  Google Scholar 

Reppert, S. M. & Weaver, D. R. Coordination of circadian timing in mammals. Nature 418, 935–941 (2002).

CAS  PubMed  Article  Google Scholar 

Welsh, D. K., Logothetis, D. E., Meister, M. & Reppert, S. M. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14, 697–706 (1995).

CAS  PubMed  Article  Google Scholar 

Miall, C. The storage of time intervals using oscillating neurons. Neural Comput. 1, 359–371 (1989).

Article  Google Scholar 

Matell, M. S. & Meck, W. H. Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Brain Res. Cogn. Brain Res. 21, 139–170 (2004).

PubMed  Article  Google Scholar 

Gu, B. M., van Rijn, H. & Meck, W. H. Oscillatory multiplexing of neural population codes for interval timing and working memory. Neurosci. Biobehav. Rev. 48, 160–185 (2015).

PubMed  Article  Google Scholar 

Bartolo, R., Prado, L. & Merchant, H. Information processing in the primate basal ganglia during sensory-guided and internally driven rhythmic tapping. J. Neurosci. 34, 3910 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kononowicz, T. W. & Rijn, H. V. Single trial beta oscillations index time estimation. Neuropsychologia 75, 381–389 (2015).

PubMed  Article  Google Scholar 

Kononowicz, T. W., Roger, C. & van Wassenhove, V. Temporal metacognition as the decoding of self-generated brain dynamics. Cereb. Cortex 29, 4366–4380 (2018).

Article  Google Scholar 

Balcı, F. & Simen, P. A decision model of timing. Curr. Opin. Behav. Sci. 8, 94–101 (2016).

Article  Google Scholar 

Buonomano, D. V. & Laje, R. Population clocks: motor timing with neural dynamics. Trends Cogn. Sci. 14, 520–527 (2010).

PubMed  PubMed Central  Article  Google Scholar 

Buonomano, D. V. & Mauk, M. D. Neural network model of the cerebellum: temporal discrimination and the timing of motor responses. Neural Comput. 6, 38–55 (1994).

Article  Google Scholar 

Remington, E. D., Egger, S. W., Narain, D., Wang, J. & Jazayeri, M. A dynamical systems perspective on flexible motor timing. Trends Cogn. Sci. 22, 938–952 (2018).

PubMed  PubMed Central  Article  Google Scholar 

Coull, J. T. & Nobre, A. C. Dissociating explicit timing from temporal expectation with fMRI. Curr. Opin. Neurobiol. 18, 137–144 (2008).

CAS  PubMed  Article  Google Scholar 

Zelaznik, H. N., Spencer, R. M. C. & Ivry, R. B. Dissociation of explicit and implicit timing in repetitive tapping and drawing movements. J. Exp. Psychol. Hum. Percept. Perform. 28, 575–588 (2002).

PubMed  Article  Google Scholar 

Ivry, R. B., Spencer, R. M., Zelaznik, H. N. & Diedrichsen, J. The cerebellum and event timing. Ann. N. Y. Acad. Sci. 978, 302–317 (2002).

PubMed  Article  Google Scholar 

Kim, J., Ghim, J.-W., Lee, J. H. & Jung, M. W. Neural correlates of interval timing in rodent prefrontal cortex. J. Neurosci. 33, 13834–13847 (2013). This study demonstrates that sensory timing can be carried out by evolution of a common neural trajectory reaching different terminal states for different physical durations.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gouvêa, T. S. et al. Striatal dynamics explain duration judgments. Elife 4, e11386 (2015).

PubMed  PubMed Central  Article  Google Scholar 

Mendoza, G., Méndez, J. C., Pérez, O., Prado, L. & Merchant, H. Neural basis for categorical boundaries in the primate pre-SMA during relative categorization of time intervals. Nat. Commun. 9, 1098 (2018).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Kim, J., Kim, D. & Jung, M. W. Distinct dynamics of striatal and prefrontal neural activity during temporal discrimination. Front. Integr. Neurosci. 12, 34 (2018).

PubMed  PubMed Central  Article  Google Scholar 

Shimbo, A., Izawa, E.-I. & Fujisawa, S. Scalable representation of time in the hippocampus. Sci. Adv. 7, eabd7013 (2021).

PubMed  PubMed Central  Article  Google Scholar 

Mita, A., Mushiake, H., Shima, K., Matsuzaka, Y. & Tanji, J. Interval time coding by neurons in the presupplementary and supplementary motor areas. Nat. Neurosci. 12, 502–507 (2009).

CAS  PubMed  Article  Google Scholar 

Mello, G. B., Soares, S. & Paton, J. J. A scalable population code for time in the striatum. Curr. Biol. 25, 1113–1122 (2015).

CAS  PubMed  Article  Google Scholar 

Zhou, S., Masmanidis, S. C. & Buonomano, D. V. Neural sequences as an optimal dynamical regime for the readout of time. Neuron https://doi.org/10.1016/j.neuron.2020.08.020 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Xu, M., Zhang, S. Y., Dan, Y. & Poo, M. M. Representation of interval timing by temporally scalable firing patterns in rat prefrontal cortex. Proc. Natl Acad. Sci. USA 111, 480–485 (2014).

CAS  PubMed  Article  Google Scholar 

Bakhurin, K. I. et al. Differential encoding of time by prefrontal and striatal network dynamics. J. Neurosci. 37, 854 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Emmons, E. B. et al. Rodent medial frontal control of temporal processing in the dorsomedial striatum. J. Neurosci. 37, 8718–8733 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Maimon, G. & Assad, J. A. A cognitive signal for the proactive timing of action in macaque LIP. Nat. Neurosci. 9, 948–955 (2006).

CAS  PubMed  Article  Google Scholar 

Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Modi, M. N., Dhawale, A. K. & Bhalla, U. S. CA1 cell activity sequences emerge after reorganization of network correlation structure during associative learning. Elife 3, e01982 (2014).

PubMed  PubMed Central  Article  Google Scholar 

Wang, J., Narain, D., Hosseini, E. A. & Jazayeri, M. Flexible timing by temporal scaling of cortical responses. Nat. Neurosci. 21, 102–110 (2018). This study demonstrates that motor timing can be carried out by controlling the speed at which neural trajectories evolve, which is reflected in the temporal scaling of single-unit responses. Recurrent neural networks trained to perform the same timing task also reach the same solution for controlling the speed at which population activity evolves.

CAS  PubMed 

留言 (0)

沒有登入
gif