The spatial organization of transcriptional control

Levine, M., Cattoglio, C. & Tjian, R. Looping back to leap forward: transcription enters a new era. Cell 157, 13–25 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341–1345 (2018). This review discusses enhancers, transcriptional regulation and the role of 3D genome organization, focusing on models and hypotheses.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Robson, M. I., Ringel, A. R. & Mundlos, S. Regulatory landscaping: how enhancer-promoter communication is sculpted in 3D. Mol. Cell 74, 1110–1122 (2019).

CAS  PubMed  Article  Google Scholar 

de Laat, W. & Duboule, D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502, 499–506 (2013).

PubMed  Article  CAS  Google Scholar 

Marinić, M., Aktas, T., Ruf, S. & Spitz, F. An integrated holo-enhancer unit defines tissue and gene specificity of the Fgf8 regulatory landscape. Dev. Cell 24, 530–542 (2013).

PubMed  Article  CAS  Google Scholar 

Lorberbaum, D. S. et al. An ancient yet flexible cis-regulatory architecture allows localized Hedgehog tuning by patched/Ptch1. eLlife 5, e13550 (2016).

Article  Google Scholar 

Ibrahim, D. M. & Mundlos, S. Three-dimensional chromatin in disease: what holds us together and what drives us apart? Curr. Opin. Cell Biol. 64, 1–9 (2020).

CAS  PubMed  Article  Google Scholar 

Long, H. K., Prescott, S. L. & Wysocka, J. Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell 167, 1170–1187 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Santiago-Algarra, D., Dao, L. T. M., Pradel, L., España, A. & Spicuglia, S. Recent advances in high-throughput approaches to dissect enhancer function. F1000Res. 6, 939 (2017).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Agbleke, A. A. et al. Advances in chromatin and chromosome research: perspectives from multiple fields. Mol. Cell 79, 881–901 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Shaban, H. A., Barth, R. & Bystricky, K. Navigating the crowd: visualizing coordination between genome dynamics, structure, and transcription. Genome Biol. 21, 278 (2020).

PubMed  PubMed Central  Article  Google Scholar 

Shaban, H. A. & Seeber, A. Monitoring the spatio-temporal organization and dynamics of the genome. Nucleic Acids Res. 48, 3423–3434 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jerkovic´, I. & Cavalli, G. Understanding 3D genome organization by multidisciplinary methods. Nat. Rev. Mol. Cell Biol. 22, 511–528 (2021). This relatively comprehensive article reviews the primary methods used in studying chromatin structure and organization.

PubMed  Article  CAS  Google Scholar 

Lim, B. & Levine, M. S. Enhancer–promoter communication: hubs or loops? Curr. Opin. Genet. Dev. 67, 5–9 (2020).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Dekker, J. et al. The 4D nucleome project. Nature 549, 219–226 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Goel, V. Y. & Hansen, A. S. The macro and micro of chromosome conformation capture. Wiley Interdisc. Rev. Dev. Biol. 10, e395 (2021).

CAS  Article  Google Scholar 

Mirny, L. & Dekker, J. Mechanisms of chromosome folding and nuclear organization: their interplay and open questions. Cold Spring Harb. Perspect. Biol. 14, a040147 (2021). This recent review summarizes major advances in the field (particularly from Hi-C and modelling), and highlights many open questions for the field.

Article  CAS  Google Scholar 

McCord, R. P., Kaplan, N. & Giorgetti, L. Chromosome conformation capture and beyond: toward an integrative view of chromosome structure and function. Mol. Cell 77, 688–708 (2020).

CAS  PubMed  Article  Google Scholar 

Dekker, J. & Mirny, L. A. The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Banerji, J., Rusconi, S. & Schaffner, W. Expression of a B-globin gene is enhanced by remote SV40 DNA sequences. Cell 27, 299–308 (1981).

CAS  PubMed  Article  Google Scholar 

Banerji, J., Olson, L. & Schaffner, W. A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33, 729–740 (1983).

CAS  PubMed  Article  Google Scholar 

Driever, W., Thoma, G. & Nüsslein-Volhard, C. Determination of spatial domains of zygotic gene expression in the Drosophila embryo by the affinity of binding sites for the bicoid morphogen. Nature 340, 363–367 (1989).

CAS  PubMed  Article  Google Scholar 

Stanojevic, D., Small, S. & Levine, M. Regulation of a segmentation stripe by overlapping activators and repressors in the Drosophila embryo. Science 254, 1385–1387 (1991).

CAS  PubMed  Article  Google Scholar 

Chung, J. H., Whiteley, M. & Felsenfeld, G. A 5′ element of the chicken β-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74, 505–514 (1993).

CAS  PubMed  Article  Google Scholar 

Udvardy, A., Maine, E. & Schedl, P. The 87A7 chromomere. Identification of novel chromatin structures flanking the heat shock locus that may define the boundaries of higher order domains. J. Mol. Biol. 185, 341–358 (1985).

CAS  PubMed  Article  Google Scholar 

Kellum, R. & Schedl, P. A position-effect assay for boundaries of higher order chromosomal domains. Cell 64, 941–950 (1991).

CAS  PubMed  Article  Google Scholar 

Dekker, J. & Misteli, T. Long-range chromatin interactions. Cold Spring Harb. Perspect. Biol. 7, a019356 (2015).

PubMed  PubMed Central  Article  Google Scholar 

Han, J., Zhang, Z. & Wang, K. 3C and 3C-based techniques: the powerful tools for spatial genome organization deciphering. Mol. Cytogenet. 11, 21 (2018).

PubMed  PubMed Central  Article  CAS  Google Scholar 

de Wit, E. & de Laat, W. A decade of 3C technologies: insights into nuclear organization. Genes Dev. 26, 11–24 (2012).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Sati, S. & Cavalli, G. Chromosome conformation capture technologies and their impact in understanding genome function. Chromosoma 126, 33–44 (2017).

PubMed  Article  Google Scholar 

Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

CAS  PubMed  Article  Google Scholar 

Deng, W. et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233–1244 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Palstra, R.-J. et al. The β-globin nuclear compartment in development and erythroid differentiation. Nat. Genet. 35, 190–194 (2003).

CAS  PubMed  Article  Google Scholar 

Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Amano, T. et al. Chromosomal dynamics at the Shh locus: limb bud-specific differential regulation of competence and active transcription. Dev. Cell 16, 47–57 (2009).

CAS  PubMed  Article  Google Scholar 

Noordermeer, D. et al. The dynamic architecture of Hox gene clusters. Science 334, 222–225 (2011).

CAS  PubMed  Article  Google Scholar 

Montavon, T. et al. A regulatory archipelago controls hox genes transcription in digits. Cell 147, 1132–1145 (2011).

CAS  PubMed  Article  Google Scholar 

Schoenfelder, S. & Fraser, P. Long-range enhancer–promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).

CAS  PubMed  Article  Google Scholar 

Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 4, 3–7 (2013).

留言 (0)

沒有登入
gif